聚(ε-己内酯)/碳酸氢钠/β-磷酸三钙复合材料:表面表征和早期生物响应。

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-06-03 DOI:10.3390/ma18112600
Alessandro Mosca Balma, Riccardo Pedraza, Clarissa Orrico, Sara Meinardi, Tullio Genova, Giovanna Gautier di Confiengo, Maria Giulia Faga, Ilaria Roato, Federico Mussano
{"title":"聚(ε-己内酯)/碳酸氢钠/β-磷酸三钙复合材料:表面表征和早期生物响应。","authors":"Alessandro Mosca Balma, Riccardo Pedraza, Clarissa Orrico, Sara Meinardi, Tullio Genova, Giovanna Gautier di Confiengo, Maria Giulia Faga, Ilaria Roato, Federico Mussano","doi":"10.3390/ma18112600","DOIUrl":null,"url":null,"abstract":"<p><p>Bone graft substitutes combining the mechanical features of poly-ε-caprolactone (PCL) and the bioactivity of β-tricalcium phosphate (β-TCP) have been widely reported in the literature. Surprisingly, however, very little is known about the incorporation of carbonate at a biomimicking level. The authors studied β-TCP/PCL composites at 20 wt.% and 40 wt.%, either enriched or not with sodium bicarbonate (at 2 wt.% and 4 wt.%), through SEM and EDX analyses; surface free energy estimation; pH measurement after 1, 2, and 3 days of incubation in cell media; nanoindentation; and a protein adsorption test with bovine serum albumin. The early biological response was assessed using adipose mesenchymal stem cells, as an established in vitro model, via cellular adhesion (20 min), spreading (24 h), and viability assays (1, 3, 7 days). By increasing the β-TCP content, the composites' hardnesses and Young's moduli (EiT) were improved, as well as their protein adsorption compared to neat PCL. Sodium bicarbonate increased the polar component of the surface energy, alkalinized the composite with a higher β-TCP content, and attenuated its early negative cell response. Further investigation is needed to deepen the knowledge of the mechanisms underpinning the mechanical features and long-term biological behavior.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155874/pdf/","citationCount":"0","resultStr":"{\"title\":\"Poly(ε-Caprolactone)/Sodium Bicarbonate/β-Tricalcium Phosphate Composites: Surface Characterization and Early Biological Response.\",\"authors\":\"Alessandro Mosca Balma, Riccardo Pedraza, Clarissa Orrico, Sara Meinardi, Tullio Genova, Giovanna Gautier di Confiengo, Maria Giulia Faga, Ilaria Roato, Federico Mussano\",\"doi\":\"10.3390/ma18112600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone graft substitutes combining the mechanical features of poly-ε-caprolactone (PCL) and the bioactivity of β-tricalcium phosphate (β-TCP) have been widely reported in the literature. Surprisingly, however, very little is known about the incorporation of carbonate at a biomimicking level. The authors studied β-TCP/PCL composites at 20 wt.% and 40 wt.%, either enriched or not with sodium bicarbonate (at 2 wt.% and 4 wt.%), through SEM and EDX analyses; surface free energy estimation; pH measurement after 1, 2, and 3 days of incubation in cell media; nanoindentation; and a protein adsorption test with bovine serum albumin. The early biological response was assessed using adipose mesenchymal stem cells, as an established in vitro model, via cellular adhesion (20 min), spreading (24 h), and viability assays (1, 3, 7 days). By increasing the β-TCP content, the composites' hardnesses and Young's moduli (EiT) were improved, as well as their protein adsorption compared to neat PCL. Sodium bicarbonate increased the polar component of the surface energy, alkalinized the composite with a higher β-TCP content, and attenuated its early negative cell response. Further investigation is needed to deepen the knowledge of the mechanisms underpinning the mechanical features and long-term biological behavior.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 11\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155874/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18112600\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18112600","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

结合聚ε-己内酯(PCL)的力学特性和β-磷酸三钙(β-TCP)的生物活性的骨移植替代物已被文献广泛报道。然而,令人惊讶的是,人们对碳酸盐在仿生学水平上的掺入知之甚少。通过SEM和EDX分析,作者研究了在20 wt.%和40 wt.%浓度下的β-TCP/PCL复合材料,分别富集或不富集碳酸氢钠(2 wt.%和4 wt.%);表面自由能估计;在细胞培养基中孵育1、2、3天后的pH值测定;nanoindentation;用牛血清白蛋白进行蛋白质吸附试验。使用脂肪间充质干细胞作为体外模型,通过细胞粘附(20分钟)、扩散(24小时)和活力测定(1、3、7天)来评估早期生物学反应。与纯PCL相比,增加β-TCP含量可提高复合材料的硬度和杨氏模量(EiT),并提高其蛋白质吸附性能。碳酸氢钠增加了表面能的极性组分,碱化了复合材料,使其β-TCP含量更高,并减弱了其早期负细胞反应。需要进一步的研究来加深对机械特征和长期生物学行为的机制的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poly(ε-Caprolactone)/Sodium Bicarbonate/β-Tricalcium Phosphate Composites: Surface Characterization and Early Biological Response.

Bone graft substitutes combining the mechanical features of poly-ε-caprolactone (PCL) and the bioactivity of β-tricalcium phosphate (β-TCP) have been widely reported in the literature. Surprisingly, however, very little is known about the incorporation of carbonate at a biomimicking level. The authors studied β-TCP/PCL composites at 20 wt.% and 40 wt.%, either enriched or not with sodium bicarbonate (at 2 wt.% and 4 wt.%), through SEM and EDX analyses; surface free energy estimation; pH measurement after 1, 2, and 3 days of incubation in cell media; nanoindentation; and a protein adsorption test with bovine serum albumin. The early biological response was assessed using adipose mesenchymal stem cells, as an established in vitro model, via cellular adhesion (20 min), spreading (24 h), and viability assays (1, 3, 7 days). By increasing the β-TCP content, the composites' hardnesses and Young's moduli (EiT) were improved, as well as their protein adsorption compared to neat PCL. Sodium bicarbonate increased the polar component of the surface energy, alkalinized the composite with a higher β-TCP content, and attenuated its early negative cell response. Further investigation is needed to deepen the knowledge of the mechanisms underpinning the mechanical features and long-term biological behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信