氧空位浓度对Bi4Ti3O12陶瓷电学性能和微观结构的影响:实验和第一性原理研究

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-06-05 DOI:10.3390/ma18112666
Tao Chen, Yang Chen, Ning Zhang, Tiantian Liu, Songlin Wang, Qi Zhang
{"title":"氧空位浓度对Bi4Ti3O12陶瓷电学性能和微观结构的影响:实验和第一性原理研究","authors":"Tao Chen, Yang Chen, Ning Zhang, Tiantian Liu, Songlin Wang, Qi Zhang","doi":"10.3390/ma18112666","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the impact of sintering temperature on oxygen vacancy concentration and its subsequent effect on the microstructure and electrical properties of Bi4Ti3O12 (BIT) ceramics. To further clarify these effects, VASP software was employed to simulate BIT ceramics with varying oxygen vacancy concentrations.The experimental results demonstrate that sintering temperature significantly influences the oxygen vacancy concentration. At the optimal sintering temperature of 1080 °C, the BIT ceramics exhibit a balanced microstructure with a grain size of 4.16 μm, the lowest measured oxygen vacancy concentration of 18.44%, and a piezoelectric coefficient (d33) of 9.8 pC/N. Additionally, the dielectric loss (tanδ) remains below 0.2 at 500 °C, indicating excellent thermal stability. VASP-based simulations reveal that increasing the oxygen vacancy concentration from 18.56% to 44.55% results in a significant collapse of the band gap (from 2.8 eV → 1.0 eV) and a transition in conductivity type from p-type to n-type. This shift induces a leakage current-dominated threshold effect, leading to a decrease in piezoelectric properties (d33 reduced from 9.8 to 6.9 pC/N). Atomic-scale density of states (DOS) analyses indicate that the delocalization of Ti3+ and the weakening of Bi-O hybridization collectively induce lattice distortion and ferroelectric inconsistency. These changes are correlated with an increase in dielectric loss and a slight reduction in Curie temperature (from 620 °C → 618 °C). In conclusion, this study comprehensively elucidates the influence of oxygen vacancy concentration on the microstructure and electrical properties of BIT ceramics. The findings provide a theoretical foundation and practical insights for designing high-performance piezoelectric ceramics.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12156073/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Oxygen Vacancy Concentration on the Electrical Properties and Microstructure of <i>Bi</i><sub>4</sub><i>Ti</i><sub>3</sub><i>O</i><sub>12</sub> Ceramics: Experimental and First-Principles Investigation.\",\"authors\":\"Tao Chen, Yang Chen, Ning Zhang, Tiantian Liu, Songlin Wang, Qi Zhang\",\"doi\":\"10.3390/ma18112666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper investigates the impact of sintering temperature on oxygen vacancy concentration and its subsequent effect on the microstructure and electrical properties of Bi4Ti3O12 (BIT) ceramics. To further clarify these effects, VASP software was employed to simulate BIT ceramics with varying oxygen vacancy concentrations.The experimental results demonstrate that sintering temperature significantly influences the oxygen vacancy concentration. At the optimal sintering temperature of 1080 °C, the BIT ceramics exhibit a balanced microstructure with a grain size of 4.16 μm, the lowest measured oxygen vacancy concentration of 18.44%, and a piezoelectric coefficient (d33) of 9.8 pC/N. Additionally, the dielectric loss (tanδ) remains below 0.2 at 500 °C, indicating excellent thermal stability. VASP-based simulations reveal that increasing the oxygen vacancy concentration from 18.56% to 44.55% results in a significant collapse of the band gap (from 2.8 eV → 1.0 eV) and a transition in conductivity type from p-type to n-type. This shift induces a leakage current-dominated threshold effect, leading to a decrease in piezoelectric properties (d33 reduced from 9.8 to 6.9 pC/N). Atomic-scale density of states (DOS) analyses indicate that the delocalization of Ti3+ and the weakening of Bi-O hybridization collectively induce lattice distortion and ferroelectric inconsistency. These changes are correlated with an increase in dielectric loss and a slight reduction in Curie temperature (from 620 °C → 618 °C). In conclusion, this study comprehensively elucidates the influence of oxygen vacancy concentration on the microstructure and electrical properties of BIT ceramics. The findings provide a theoretical foundation and practical insights for designing high-performance piezoelectric ceramics.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 11\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12156073/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18112666\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18112666","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了烧结温度对氧空位浓度的影响及其对Bi4Ti3O12 (BIT)陶瓷微观结构和电学性能的影响。为了进一步阐明这些影响,利用VASP软件模拟了不同氧空位浓度的BIT陶瓷。实验结果表明,烧结温度对氧空位浓度有显著影响。在最佳烧结温度为1080℃时,该陶瓷的微观结构平衡,晶粒尺寸为4.16 μm,氧空位浓度最低为18.44%,压电系数(d33)为9.8 pC/N。此外,在500°C时,介质损耗(tanδ)保持在0.2以下,表明具有优异的热稳定性。基于vasp的模拟结果表明,当氧空位浓度从18.56%增加到44.55%时,带隙明显缩小(从2.8 eV→1.0 eV),电导率类型从p型转变为n型。这种转变引起泄漏电流主导的阈值效应,导致压电性能下降(d33从9.8降至6.9 pC/N)。原子尺度态密度(DOS)分析表明,Ti3+的离域和Bi-O杂化的减弱共同导致了晶格畸变和铁电不一致。这些变化与介质损耗的增加和居里温度的轻微降低(从620℃→618℃)有关。综上所述,本研究全面阐明了氧空位浓度对BIT陶瓷微观结构和电学性能的影响。研究结果为高性能压电陶瓷的设计提供了理论基础和实践见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Oxygen Vacancy Concentration on the Electrical Properties and Microstructure of Bi4Ti3O12 Ceramics: Experimental and First-Principles Investigation.

This paper investigates the impact of sintering temperature on oxygen vacancy concentration and its subsequent effect on the microstructure and electrical properties of Bi4Ti3O12 (BIT) ceramics. To further clarify these effects, VASP software was employed to simulate BIT ceramics with varying oxygen vacancy concentrations.The experimental results demonstrate that sintering temperature significantly influences the oxygen vacancy concentration. At the optimal sintering temperature of 1080 °C, the BIT ceramics exhibit a balanced microstructure with a grain size of 4.16 μm, the lowest measured oxygen vacancy concentration of 18.44%, and a piezoelectric coefficient (d33) of 9.8 pC/N. Additionally, the dielectric loss (tanδ) remains below 0.2 at 500 °C, indicating excellent thermal stability. VASP-based simulations reveal that increasing the oxygen vacancy concentration from 18.56% to 44.55% results in a significant collapse of the band gap (from 2.8 eV → 1.0 eV) and a transition in conductivity type from p-type to n-type. This shift induces a leakage current-dominated threshold effect, leading to a decrease in piezoelectric properties (d33 reduced from 9.8 to 6.9 pC/N). Atomic-scale density of states (DOS) analyses indicate that the delocalization of Ti3+ and the weakening of Bi-O hybridization collectively induce lattice distortion and ferroelectric inconsistency. These changes are correlated with an increase in dielectric loss and a slight reduction in Curie temperature (from 620 °C → 618 °C). In conclusion, this study comprehensively elucidates the influence of oxygen vacancy concentration on the microstructure and electrical properties of BIT ceramics. The findings provide a theoretical foundation and practical insights for designing high-performance piezoelectric ceramics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信