利用握力和生活方式因素确定老年门诊患者骨骼肌质量指数的多元回归模型。

Hisanori Otsubo, Yuri Ota, Tsuyoshi Suda, Takashi Kuzumaki, Kazue Kaido, Hitoshi Asai, Toshiaki Yamazaki, Pleiades T Inaoka, Eiki Matsushita
{"title":"利用握力和生活方式因素确定老年门诊患者骨骼肌质量指数的多元回归模型。","authors":"Hisanori Otsubo, Yuri Ota, Tsuyoshi Suda, Takashi Kuzumaki, Kazue Kaido, Hitoshi Asai, Toshiaki Yamazaki, Pleiades T Inaoka, Eiki Matsushita","doi":"10.1589/jpts.37.284","DOIUrl":null,"url":null,"abstract":"<p><p>[Purpose] Skeletal muscle mass index, an essential parameter for diagnosing sarcopenia, necessitates special measurement. Using clinical data that can be easily evaluated through nutrition counselling, we aimed to develop a formula to derive the skeletal muscle mass index. [Participants and Methods] This retrospective study enrolled older outpatients who visited an acute-care hospital for the periodical consultation of comorbidities. The skeletal muscle mass index was measured using the bioimpedance method. Stepwise multiple linear regression was used to clarify the relationship between the skeletal muscle mass index and various factors, including age, sex, height, body weight, the Charlson Comorbidity Index, grip strength, the Barthel Index, and lifestyle factors. [Results] Among the 142 participants of this study, we applied a prediction model that was derived as follows: skeletal muscle mass index (kg/m<sup>2</sup>)=0.361 × sex (0: female, 1: male) + 0.068 × body weight (kg) -0.065 × Charlson Comorbidity Index (score) + 0.022 × grip strength (kg) + 0.089 × balanced meals per day (3: three meals, 2: two meals, 1: one meal, or 0: no meals) + 0.101 × working activity (1: unemployed at home, 2: housework, 3: desk work, 4: desk/non-desk work, or 5: non-desk work) + 1.549 (R<sup>2</sup>=0.847). [Conclusion] Dietary habits and working activities correlated with the skeletal muscle mass index. This model may facilitate the calculation of the skeletal muscle mass index in patients whose bioimpedance data are unavailable.</p>","PeriodicalId":16834,"journal":{"name":"Journal of Physical Therapy Science","volume":"37 6","pages":"284-290"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153257/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiple regression model for ascertaining the skeletal muscle mass index using grip strength and lifestyle factors in older outpatients.\",\"authors\":\"Hisanori Otsubo, Yuri Ota, Tsuyoshi Suda, Takashi Kuzumaki, Kazue Kaido, Hitoshi Asai, Toshiaki Yamazaki, Pleiades T Inaoka, Eiki Matsushita\",\"doi\":\"10.1589/jpts.37.284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>[Purpose] Skeletal muscle mass index, an essential parameter for diagnosing sarcopenia, necessitates special measurement. Using clinical data that can be easily evaluated through nutrition counselling, we aimed to develop a formula to derive the skeletal muscle mass index. [Participants and Methods] This retrospective study enrolled older outpatients who visited an acute-care hospital for the periodical consultation of comorbidities. The skeletal muscle mass index was measured using the bioimpedance method. Stepwise multiple linear regression was used to clarify the relationship between the skeletal muscle mass index and various factors, including age, sex, height, body weight, the Charlson Comorbidity Index, grip strength, the Barthel Index, and lifestyle factors. [Results] Among the 142 participants of this study, we applied a prediction model that was derived as follows: skeletal muscle mass index (kg/m<sup>2</sup>)=0.361 × sex (0: female, 1: male) + 0.068 × body weight (kg) -0.065 × Charlson Comorbidity Index (score) + 0.022 × grip strength (kg) + 0.089 × balanced meals per day (3: three meals, 2: two meals, 1: one meal, or 0: no meals) + 0.101 × working activity (1: unemployed at home, 2: housework, 3: desk work, 4: desk/non-desk work, or 5: non-desk work) + 1.549 (R<sup>2</sup>=0.847). [Conclusion] Dietary habits and working activities correlated with the skeletal muscle mass index. This model may facilitate the calculation of the skeletal muscle mass index in patients whose bioimpedance data are unavailable.</p>\",\"PeriodicalId\":16834,\"journal\":{\"name\":\"Journal of Physical Therapy Science\",\"volume\":\"37 6\",\"pages\":\"284-290\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153257/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Therapy Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1589/jpts.37.284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Therapy Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1589/jpts.37.284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

【目的】骨骼肌质量指数是诊断骨骼肌减少症的重要指标,需要专门测量。利用可以通过营养咨询轻松评估的临床数据,我们旨在开发一个公式来推导骨骼肌质量指数。[参与者和方法]本回顾性研究纳入了到急症医院定期咨询合并症的老年门诊患者。采用生物阻抗法测定骨骼肌质量指数。采用逐步多元线性回归分析骨骼肌质量指数与年龄、性别、身高、体重、Charlson共病指数、握力、Barthel指数、生活方式等因素的关系。[结果]这项研究的142名参与者中,我们应用一个预测模型,推导如下:骨骼肌质量指数(kg / m2) = 0.361×性(0:女,1:男性)+ 0.068(公斤)-0.065××体重Charlson发病率指数(分数)+ 0.022×握力(公斤)+ 0.089×每天平衡膳食(3:三餐,2:两顿饭,1:一顿饭,或者0:不吃饭)+ 0.101×工作活动(1:失业在家,2:家务,3:案头工作,4:桌子/节目的工作,或5:非案头工作)+ 1.549 (R2=0.847)。[结论]饮食习惯和劳动活动与骨骼肌质量指数相关。该模型可以方便计算生物阻抗数据不可用的患者的骨骼肌质量指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple regression model for ascertaining the skeletal muscle mass index using grip strength and lifestyle factors in older outpatients.

[Purpose] Skeletal muscle mass index, an essential parameter for diagnosing sarcopenia, necessitates special measurement. Using clinical data that can be easily evaluated through nutrition counselling, we aimed to develop a formula to derive the skeletal muscle mass index. [Participants and Methods] This retrospective study enrolled older outpatients who visited an acute-care hospital for the periodical consultation of comorbidities. The skeletal muscle mass index was measured using the bioimpedance method. Stepwise multiple linear regression was used to clarify the relationship between the skeletal muscle mass index and various factors, including age, sex, height, body weight, the Charlson Comorbidity Index, grip strength, the Barthel Index, and lifestyle factors. [Results] Among the 142 participants of this study, we applied a prediction model that was derived as follows: skeletal muscle mass index (kg/m2)=0.361 × sex (0: female, 1: male) + 0.068 × body weight (kg) -0.065 × Charlson Comorbidity Index (score) + 0.022 × grip strength (kg) + 0.089 × balanced meals per day (3: three meals, 2: two meals, 1: one meal, or 0: no meals) + 0.101 × working activity (1: unemployed at home, 2: housework, 3: desk work, 4: desk/non-desk work, or 5: non-desk work) + 1.549 (R2=0.847). [Conclusion] Dietary habits and working activities correlated with the skeletal muscle mass index. This model may facilitate the calculation of the skeletal muscle mass index in patients whose bioimpedance data are unavailable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
137
审稿时长
4-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信