在血流分流治疗的动脉瘤中,最小化定量血管造影中人为引起的变异性,以实现稳健且可解释的基于人工智能的闭塞预测。

IF 4.3 1区 医学 Q1 NEUROIMAGING
Parmita Mondal, Mohammad Mahdi Shiraz Bhurwani, Swetadri Vasan Setlur Nagesh, Pui Man Rosalind Lai, Jason M Davies, Elad I Levy, Kunal Vakharia, Michael Levitt, Adnan H Siddiqui, Ciprian N Ionita
{"title":"在血流分流治疗的动脉瘤中,最小化定量血管造影中人为引起的变异性,以实现稳健且可解释的基于人工智能的闭塞预测。","authors":"Parmita Mondal, Mohammad Mahdi Shiraz Bhurwani, Swetadri Vasan Setlur Nagesh, Pui Man Rosalind Lai, Jason M Davies, Elad I Levy, Kunal Vakharia, Michael Levitt, Adnan H Siddiqui, Ciprian N Ionita","doi":"10.1136/jnis-2025-023416","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bias from contrast injection variability is a significant obstacle to accurate intracranial aneurysm (IA) occlusion prediction using quantitative angiography (QA) and deep neural networks (DNNs). This study explores bias removal and explainable AI (XAI) for outcome prediction.</p><p><strong>Objective: </strong>To implement an injection bias removal algorithm for reducing QA variability and examine the impact of XAI on the reliability and interpretability of deep learning models for occlusion prediction in flow diverter-treated aneurysms.</p><p><strong>Methods: </strong>This study used angiograms from 458 patients with flow diverter-treated IAs, with 6-month follow-up defining occlusion status. We minimized injection variability by deconvolving the parent artery input to isolate the aneurysm's impulse response, then reconvolving it with a standardized injection curve. A DNN trained on these QA-derived biomarkers predicted 6-month occlusion. Local Interpretable Model-Agnostic Explanations (LIME) identified the key imaging features influencing the model, ensuring transparency and clinical relevance.</p><p><strong>Results: </strong>The DNN trained with uncorrected QA parameters achieved a mean area under the receiver operating characteristic curve (AUROC) of 0.60±0.05 and an accuracy of 0.58±0.03. After correcting for injection bias by deconvolving the parent artery input and reconvolving it with a standardized injection curve, the DNN's AUCROC increased to 0.79±0.02 and accuracy to 0.73±0.01. Sensitivity and specificity were 67.61±1.93% and 76.19±1.12%, respectively. LIME plots were added for each prediction to enhance interpretability.</p><p><strong>Conclusions: </strong>Standardizing QA parameters via injection bias correction improves occlusion prediction accuracy for flow diverter-treated IAs. Adding explainable AI (eg, LIME) clarifies model decisions, demonstrating the feasibility of clinically interpretable AI-based outcome prediction.</p>","PeriodicalId":16411,"journal":{"name":"Journal of NeuroInterventional Surgery","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimizing human-induced variability in quantitative angiography for a robust and explainable AI-based occlusion prediction in flow diverter-treated aneurysms.\",\"authors\":\"Parmita Mondal, Mohammad Mahdi Shiraz Bhurwani, Swetadri Vasan Setlur Nagesh, Pui Man Rosalind Lai, Jason M Davies, Elad I Levy, Kunal Vakharia, Michael Levitt, Adnan H Siddiqui, Ciprian N Ionita\",\"doi\":\"10.1136/jnis-2025-023416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Bias from contrast injection variability is a significant obstacle to accurate intracranial aneurysm (IA) occlusion prediction using quantitative angiography (QA) and deep neural networks (DNNs). This study explores bias removal and explainable AI (XAI) for outcome prediction.</p><p><strong>Objective: </strong>To implement an injection bias removal algorithm for reducing QA variability and examine the impact of XAI on the reliability and interpretability of deep learning models for occlusion prediction in flow diverter-treated aneurysms.</p><p><strong>Methods: </strong>This study used angiograms from 458 patients with flow diverter-treated IAs, with 6-month follow-up defining occlusion status. We minimized injection variability by deconvolving the parent artery input to isolate the aneurysm's impulse response, then reconvolving it with a standardized injection curve. A DNN trained on these QA-derived biomarkers predicted 6-month occlusion. Local Interpretable Model-Agnostic Explanations (LIME) identified the key imaging features influencing the model, ensuring transparency and clinical relevance.</p><p><strong>Results: </strong>The DNN trained with uncorrected QA parameters achieved a mean area under the receiver operating characteristic curve (AUROC) of 0.60±0.05 and an accuracy of 0.58±0.03. After correcting for injection bias by deconvolving the parent artery input and reconvolving it with a standardized injection curve, the DNN's AUCROC increased to 0.79±0.02 and accuracy to 0.73±0.01. Sensitivity and specificity were 67.61±1.93% and 76.19±1.12%, respectively. LIME plots were added for each prediction to enhance interpretability.</p><p><strong>Conclusions: </strong>Standardizing QA parameters via injection bias correction improves occlusion prediction accuracy for flow diverter-treated IAs. Adding explainable AI (eg, LIME) clarifies model decisions, demonstrating the feasibility of clinically interpretable AI-based outcome prediction.</p>\",\"PeriodicalId\":16411,\"journal\":{\"name\":\"Journal of NeuroInterventional Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of NeuroInterventional Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jnis-2025-023416\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroInterventional Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jnis-2025-023416","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:造影剂注射变异性的偏差是定量血管造影(QA)和深度神经网络(dnn)准确预测颅内动脉瘤(IA)闭塞的重要障碍。本研究探讨了偏差去除和可解释人工智能(XAI)的结果预测。目的:实现一种减少QA可变性的注射偏置去除算法,并检查XAI对用于血流分流治疗动脉瘤闭塞预测的深度学习模型的可靠性和可解释性的影响。方法:本研究使用458例经分流治疗的IAs患者的血管造影,随访6个月,确定闭塞状态。我们通过对载动脉输入进行反卷积来隔离动脉瘤的脉冲响应,然后用标准化的注射曲线对其进行再卷积,从而将注射变异性降至最低。在这些qa衍生的生物标志物上训练的DNN预测了6个月的闭塞。局部可解释模型不可知解释(LIME)确定了影响模型的关键影像学特征,确保了透明度和临床相关性。结果:未校正QA参数训练的深度神经网络在受试者工作特征曲线下的平均面积(AUROC)为0.60±0.05,准确度为0.58±0.03。通过对母动脉输入进行反卷积并将其与标准化注射曲线进行再卷积来纠正注射偏差后,DNN的AUCROC增加到0.79±0.02,精度增加到0.73±0.01。敏感性67.61±1.93%,特异性76.19±1.12%。每个预测都添加了LIME图,以提高可解释性。结论:通过注射偏置校正标准化QA参数可提高分流剂治疗IAs的闭塞预测精度。添加可解释的人工智能(如LIME)澄清了模型决策,证明了临床可解释的基于人工智能的结果预测的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimizing human-induced variability in quantitative angiography for a robust and explainable AI-based occlusion prediction in flow diverter-treated aneurysms.

Background: Bias from contrast injection variability is a significant obstacle to accurate intracranial aneurysm (IA) occlusion prediction using quantitative angiography (QA) and deep neural networks (DNNs). This study explores bias removal and explainable AI (XAI) for outcome prediction.

Objective: To implement an injection bias removal algorithm for reducing QA variability and examine the impact of XAI on the reliability and interpretability of deep learning models for occlusion prediction in flow diverter-treated aneurysms.

Methods: This study used angiograms from 458 patients with flow diverter-treated IAs, with 6-month follow-up defining occlusion status. We minimized injection variability by deconvolving the parent artery input to isolate the aneurysm's impulse response, then reconvolving it with a standardized injection curve. A DNN trained on these QA-derived biomarkers predicted 6-month occlusion. Local Interpretable Model-Agnostic Explanations (LIME) identified the key imaging features influencing the model, ensuring transparency and clinical relevance.

Results: The DNN trained with uncorrected QA parameters achieved a mean area under the receiver operating characteristic curve (AUROC) of 0.60±0.05 and an accuracy of 0.58±0.03. After correcting for injection bias by deconvolving the parent artery input and reconvolving it with a standardized injection curve, the DNN's AUCROC increased to 0.79±0.02 and accuracy to 0.73±0.01. Sensitivity and specificity were 67.61±1.93% and 76.19±1.12%, respectively. LIME plots were added for each prediction to enhance interpretability.

Conclusions: Standardizing QA parameters via injection bias correction improves occlusion prediction accuracy for flow diverter-treated IAs. Adding explainable AI (eg, LIME) clarifies model decisions, demonstrating the feasibility of clinically interpretable AI-based outcome prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
14.60%
发文量
291
审稿时长
4-8 weeks
期刊介绍: The Journal of NeuroInterventional Surgery (JNIS) is a leading peer review journal for scientific research and literature pertaining to the field of neurointerventional surgery. The journal launch follows growing professional interest in neurointerventional techniques for the treatment of a range of neurological and vascular problems including stroke, aneurysms, brain tumors, and spinal compression.The journal is owned by SNIS and is also the official journal of the Interventional Chapter of the Australian and New Zealand Society of Neuroradiology (ANZSNR), the Canadian Interventional Neuro Group, the Hong Kong Neurological Society (HKNS) and the Neuroradiological Society of Taiwan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信