Lea K Northcote, Matthew S Teynor, Gemma C Solomon
{"title":"非马尔可夫电子转移动力学量子模拟的重复相互作用方案。","authors":"Lea K Northcote, Matthew S Teynor, Gemma C Solomon","doi":"10.1063/5.0268071","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum algorithms have the potential to revolutionize our understanding of open quantum systems in chemistry. In this work, we demonstrate that a repeated interaction model, which could serve as the foundation for a digital quantum algorithm, can effectively reproduce non-Markovian electron transfer dynamics under four different donor-acceptor parameter regimes and for a donor-bridge-acceptor system. We systematically explore how the model scales for the regimes. Notably, our approach exhibits favorable scaling in the required repeated interaction duration as the electronic coupling, temperature, damping rate, and system size increase. Furthermore, a single Trotter step per repeated interaction leads to an acceptably small error, and high-fidelity initial states can be prepared with a short time evolution. This efficiency highlights the potential of the model for tackling increasingly complex systems. When fault-tolerant quantum hardware becomes available, algorithms based on this model could be extended to incorporate structured baths, additional energy levels, or more intricate coupling schemes, enabling the simulation of real-world open quantum systems that remain beyond the reach of classical computation.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 22","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repeated interaction scheme for the quantum simulation of non-Markovian electron transfer dynamics.\",\"authors\":\"Lea K Northcote, Matthew S Teynor, Gemma C Solomon\",\"doi\":\"10.1063/5.0268071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum algorithms have the potential to revolutionize our understanding of open quantum systems in chemistry. In this work, we demonstrate that a repeated interaction model, which could serve as the foundation for a digital quantum algorithm, can effectively reproduce non-Markovian electron transfer dynamics under four different donor-acceptor parameter regimes and for a donor-bridge-acceptor system. We systematically explore how the model scales for the regimes. Notably, our approach exhibits favorable scaling in the required repeated interaction duration as the electronic coupling, temperature, damping rate, and system size increase. Furthermore, a single Trotter step per repeated interaction leads to an acceptably small error, and high-fidelity initial states can be prepared with a short time evolution. This efficiency highlights the potential of the model for tackling increasingly complex systems. When fault-tolerant quantum hardware becomes available, algorithms based on this model could be extended to incorporate structured baths, additional energy levels, or more intricate coupling schemes, enabling the simulation of real-world open quantum systems that remain beyond the reach of classical computation.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 22\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0268071\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0268071","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Repeated interaction scheme for the quantum simulation of non-Markovian electron transfer dynamics.
Quantum algorithms have the potential to revolutionize our understanding of open quantum systems in chemistry. In this work, we demonstrate that a repeated interaction model, which could serve as the foundation for a digital quantum algorithm, can effectively reproduce non-Markovian electron transfer dynamics under four different donor-acceptor parameter regimes and for a donor-bridge-acceptor system. We systematically explore how the model scales for the regimes. Notably, our approach exhibits favorable scaling in the required repeated interaction duration as the electronic coupling, temperature, damping rate, and system size increase. Furthermore, a single Trotter step per repeated interaction leads to an acceptably small error, and high-fidelity initial states can be prepared with a short time evolution. This efficiency highlights the potential of the model for tackling increasingly complex systems. When fault-tolerant quantum hardware becomes available, algorithms based on this model could be extended to incorporate structured baths, additional energy levels, or more intricate coupling schemes, enabling the simulation of real-world open quantum systems that remain beyond the reach of classical computation.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.