GlcNAc对小鼠肾脏血管紧张素相关糖蛋白的修饰。

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Haruka Kawade, Wanxue Bao, Yuko Tokoro, Yoshimasa Ito, Yudai Tsuji, Kazuo Takahashi, Kazuki Nakajima, Miyako Nakano, Yasuhiko Kizuka
{"title":"GlcNAc对小鼠肾脏血管紧张素相关糖蛋白的修饰。","authors":"Haruka Kawade, Wanxue Bao, Yuko Tokoro, Yoshimasa Ito, Yudai Tsuji, Kazuo Takahashi, Kazuki Nakajima, Miyako Nakano, Yasuhiko Kizuka","doi":"10.1093/jb/mvaf033","DOIUrl":null,"url":null,"abstract":"<p><p>Structural variations of N-glycans critically regulate glycoprotein functions and are involved in various human diseases. N-Acetylglucosaminyltransferase-III (GnT-III or MGAT3) is highly expressed in the brain and kidney and is an N-glycan branching enzyme that biosynthesizes the unique N-glycan branch designated as bisecting GlcNAc. Its roles in Alzheimer's disease and cancer have been revealed, but the functions of bisecting GlcNAc in the kidney are poorly understood. Here, we show that kidneys in the GnT-III-knockout (KO) mouse exhibit impaired body fluid balance and present interstitial edema. To understand the molecular mechanisms further, we biochemically purified the glycoproteins modified by GnT-III in the mouse kidney and identified these proteins using proteomics. We found that the proteins involved in the pathway for angiotensin II (Ang II) metabolism are modified by GnT-III, and that the subcellular localization of angiotensin converting enzyme was altered in GnT-III-KO cells. Furthermore, the pathology in models of Ang II-related disease was slightly more severe in GnT-III-KO than in wild-type mice. Our data indicate a protective role for bisecting GlcNAc in the mouse kidney, highlighting a newly described link between specific N-glycan structures and renal functions.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bisecting GlcNAc modification of angiotensin-related glycoproteins in mouse kidney.\",\"authors\":\"Haruka Kawade, Wanxue Bao, Yuko Tokoro, Yoshimasa Ito, Yudai Tsuji, Kazuo Takahashi, Kazuki Nakajima, Miyako Nakano, Yasuhiko Kizuka\",\"doi\":\"10.1093/jb/mvaf033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structural variations of N-glycans critically regulate glycoprotein functions and are involved in various human diseases. N-Acetylglucosaminyltransferase-III (GnT-III or MGAT3) is highly expressed in the brain and kidney and is an N-glycan branching enzyme that biosynthesizes the unique N-glycan branch designated as bisecting GlcNAc. Its roles in Alzheimer's disease and cancer have been revealed, but the functions of bisecting GlcNAc in the kidney are poorly understood. Here, we show that kidneys in the GnT-III-knockout (KO) mouse exhibit impaired body fluid balance and present interstitial edema. To understand the molecular mechanisms further, we biochemically purified the glycoproteins modified by GnT-III in the mouse kidney and identified these proteins using proteomics. We found that the proteins involved in the pathway for angiotensin II (Ang II) metabolism are modified by GnT-III, and that the subcellular localization of angiotensin converting enzyme was altered in GnT-III-KO cells. Furthermore, the pathology in models of Ang II-related disease was slightly more severe in GnT-III-KO than in wild-type mice. Our data indicate a protective role for bisecting GlcNAc in the mouse kidney, highlighting a newly described link between specific N-glycan structures and renal functions.</p>\",\"PeriodicalId\":15234,\"journal\":{\"name\":\"Journal of biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvaf033\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf033","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

n -聚糖的结构变化对糖蛋白功能起着关键的调节作用,并与多种人类疾病有关。n -乙酰氨基葡萄糖转移酶iii (GnT-III或MGAT3)在大脑和肾脏中高度表达,是一种n -聚糖分支酶,生物合成独特的n -聚糖分支,被指定为分割GlcNAc。它在阿尔茨海默病和癌症中的作用已被揭示,但在肾脏中分割GlcNAc的功能尚不清楚。在这里,我们发现gnt - iii基因敲除(KO)小鼠的肾脏表现出体液平衡受损和间质水肿。为了进一步了解其分子机制,我们对小鼠肾脏中GnT-III修饰的糖蛋白进行了生化纯化,并利用蛋白质组学技术对其进行了鉴定。我们发现参与血管紧张素II (Ang II)代谢途径的蛋白被GnT-III修饰,并且血管紧张素转换酶的亚细胞定位在GnT-III- ko细胞中发生了改变。此外,GnT-III-KO中Ang ii相关疾病模型的病理情况略高于野生型小鼠。我们的数据表明,分割GlcNAc在小鼠肾脏中的保护作用,突出了特定n -聚糖结构与肾功能之间的新描述的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bisecting GlcNAc modification of angiotensin-related glycoproteins in mouse kidney.

Structural variations of N-glycans critically regulate glycoprotein functions and are involved in various human diseases. N-Acetylglucosaminyltransferase-III (GnT-III or MGAT3) is highly expressed in the brain and kidney and is an N-glycan branching enzyme that biosynthesizes the unique N-glycan branch designated as bisecting GlcNAc. Its roles in Alzheimer's disease and cancer have been revealed, but the functions of bisecting GlcNAc in the kidney are poorly understood. Here, we show that kidneys in the GnT-III-knockout (KO) mouse exhibit impaired body fluid balance and present interstitial edema. To understand the molecular mechanisms further, we biochemically purified the glycoproteins modified by GnT-III in the mouse kidney and identified these proteins using proteomics. We found that the proteins involved in the pathway for angiotensin II (Ang II) metabolism are modified by GnT-III, and that the subcellular localization of angiotensin converting enzyme was altered in GnT-III-KO cells. Furthermore, the pathology in models of Ang II-related disease was slightly more severe in GnT-III-KO than in wild-type mice. Our data indicate a protective role for bisecting GlcNAc in the mouse kidney, highlighting a newly described link between specific N-glycan structures and renal functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biochemistry
Journal of biochemistry 生物-生化与分子生物学
CiteScore
4.80
自引率
3.70%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信