{"title":"兔主动脉粥样硬化分子磁共振成像放射学分析。","authors":"Hwunjae Lee","doi":"10.1007/s11596-025-00069-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Atherosclerosis involves not only the narrowing of blood vessels and plaque accumulation but also changes in plaque composition and stability, all of which are critical for disease progression. Conventional imaging techniques such as magnetic resonance angiography (MRA) and digital subtraction angiography (DSA) primarily assess luminal narrowing and plaque size, but have limited capability in identifying plaque instability and inflammation within the vascular muscle wall. This study aimed to develop and evaluate a novel imaging approach using ligand-modified nanomagnetic contrast (lmNMC) nanoprobes in combination with molecular magnetic resonance imaging (mMRI) to visualize and quantify vascular inflammation and plaque characteristics in a rabbit model of atherosclerosis.</p><p><strong>Methods: </strong>A rabbit model of atherosclerosis was established and underwent mMRI before and after administration of lmNMC nanoprobes. Radiomic features were extracted from segmented images using discrete wavelet transform (DWT) to assess spatial frequency changes and gray-level co-occurrence matrix (GLCM) analysis to evaluate textural properties. Further radiomic analysis was performed using neural network-based regression and clustering, including the application of self-organizing maps (SOMs) to validate the consistency of radiomic pattern between training and testing data.</p><p><strong>Results: </strong>Radiomic analysis revealed significant changes in spatial frequency between pre- and post-contrast images in both the horizontal and vertical directions. GLCM analysis showed an increase in contrast from 0.08463 to 0.1021 and a slight decrease in homogeneity from 0.9593 to 0.9540. Energy values declined from 0.2256 to 0.2019, while correlation increased marginally from 0.9659 to 0.9708. Neural network regression demonstrated strong convergence between target and output coordinates. Additionally, SOM clustering revealed consistent weight locations and neighbor distances across datasets, supporting the reliability of the radiomic validation.</p><p><strong>Conclusion: </strong>The integration of lmNMC nanoprobes with mMRI enables detailed visualization of atherosclerotic plaques and surrounding vascular inflammation in a preclinical model. This method shows promise for enhancing the characterization of unstable plaques and may facilitate early detection of high-risk atherosclerotic lesions, potentially improving diagnostic and therapeutic strategies.</p>","PeriodicalId":10820,"journal":{"name":"Current Medical Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiomic Analysis of Molecular Magnetic Resonance Imaging of Aortic Atherosclerosis in Rabbits.\",\"authors\":\"Hwunjae Lee\",\"doi\":\"10.1007/s11596-025-00069-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Atherosclerosis involves not only the narrowing of blood vessels and plaque accumulation but also changes in plaque composition and stability, all of which are critical for disease progression. Conventional imaging techniques such as magnetic resonance angiography (MRA) and digital subtraction angiography (DSA) primarily assess luminal narrowing and plaque size, but have limited capability in identifying plaque instability and inflammation within the vascular muscle wall. This study aimed to develop and evaluate a novel imaging approach using ligand-modified nanomagnetic contrast (lmNMC) nanoprobes in combination with molecular magnetic resonance imaging (mMRI) to visualize and quantify vascular inflammation and plaque characteristics in a rabbit model of atherosclerosis.</p><p><strong>Methods: </strong>A rabbit model of atherosclerosis was established and underwent mMRI before and after administration of lmNMC nanoprobes. Radiomic features were extracted from segmented images using discrete wavelet transform (DWT) to assess spatial frequency changes and gray-level co-occurrence matrix (GLCM) analysis to evaluate textural properties. Further radiomic analysis was performed using neural network-based regression and clustering, including the application of self-organizing maps (SOMs) to validate the consistency of radiomic pattern between training and testing data.</p><p><strong>Results: </strong>Radiomic analysis revealed significant changes in spatial frequency between pre- and post-contrast images in both the horizontal and vertical directions. GLCM analysis showed an increase in contrast from 0.08463 to 0.1021 and a slight decrease in homogeneity from 0.9593 to 0.9540. Energy values declined from 0.2256 to 0.2019, while correlation increased marginally from 0.9659 to 0.9708. Neural network regression demonstrated strong convergence between target and output coordinates. Additionally, SOM clustering revealed consistent weight locations and neighbor distances across datasets, supporting the reliability of the radiomic validation.</p><p><strong>Conclusion: </strong>The integration of lmNMC nanoprobes with mMRI enables detailed visualization of atherosclerotic plaques and surrounding vascular inflammation in a preclinical model. This method shows promise for enhancing the characterization of unstable plaques and may facilitate early detection of high-risk atherosclerotic lesions, potentially improving diagnostic and therapeutic strategies.</p>\",\"PeriodicalId\":10820,\"journal\":{\"name\":\"Current Medical Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Medical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11596-025-00069-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11596-025-00069-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Radiomic Analysis of Molecular Magnetic Resonance Imaging of Aortic Atherosclerosis in Rabbits.
Objective: Atherosclerosis involves not only the narrowing of blood vessels and plaque accumulation but also changes in plaque composition and stability, all of which are critical for disease progression. Conventional imaging techniques such as magnetic resonance angiography (MRA) and digital subtraction angiography (DSA) primarily assess luminal narrowing and plaque size, but have limited capability in identifying plaque instability and inflammation within the vascular muscle wall. This study aimed to develop and evaluate a novel imaging approach using ligand-modified nanomagnetic contrast (lmNMC) nanoprobes in combination with molecular magnetic resonance imaging (mMRI) to visualize and quantify vascular inflammation and plaque characteristics in a rabbit model of atherosclerosis.
Methods: A rabbit model of atherosclerosis was established and underwent mMRI before and after administration of lmNMC nanoprobes. Radiomic features were extracted from segmented images using discrete wavelet transform (DWT) to assess spatial frequency changes and gray-level co-occurrence matrix (GLCM) analysis to evaluate textural properties. Further radiomic analysis was performed using neural network-based regression and clustering, including the application of self-organizing maps (SOMs) to validate the consistency of radiomic pattern between training and testing data.
Results: Radiomic analysis revealed significant changes in spatial frequency between pre- and post-contrast images in both the horizontal and vertical directions. GLCM analysis showed an increase in contrast from 0.08463 to 0.1021 and a slight decrease in homogeneity from 0.9593 to 0.9540. Energy values declined from 0.2256 to 0.2019, while correlation increased marginally from 0.9659 to 0.9708. Neural network regression demonstrated strong convergence between target and output coordinates. Additionally, SOM clustering revealed consistent weight locations and neighbor distances across datasets, supporting the reliability of the radiomic validation.
Conclusion: The integration of lmNMC nanoprobes with mMRI enables detailed visualization of atherosclerotic plaques and surrounding vascular inflammation in a preclinical model. This method shows promise for enhancing the characterization of unstable plaques and may facilitate early detection of high-risk atherosclerotic lesions, potentially improving diagnostic and therapeutic strategies.
期刊介绍:
Current Medical Science provides a forum for peer-reviewed papers in the medical sciences, to promote academic exchange between Chinese researchers and doctors and their foreign counterparts. The journal covers the subjects of biomedicine such as physiology, biochemistry, molecular biology, pharmacology, pathology and pathophysiology, etc., and clinical research, such as surgery, internal medicine, obstetrics and gynecology, pediatrics and otorhinolaryngology etc. The articles appearing in Current Medical Science are mainly in English, with a very small number of its papers in German, to pay tribute to its German founder. This journal is the only medical periodical in Western languages sponsored by an educational institution located in the central part of China.