Long Zhu, Yueqi Zhao, Mei Zhou, Xiaotong Guo, Yinxian Zhang, Dongjun Liu, Xudong Guo
{"title":"VDAC2通过P53信号通路介导绒山羊毛囊干细胞凋亡","authors":"Long Zhu, Yueqi Zhao, Mei Zhou, Xiaotong Guo, Yinxian Zhang, Dongjun Liu, Xudong Guo","doi":"10.3390/ani15111671","DOIUrl":null,"url":null,"abstract":"<p><p>Hair follicle stem cells (HFSCs) are pluripotent stem cells located in the bulges of hair follicles. Apoptosis regulates tissue homeostasis by eliminating unnecessary or damaged cells during development and aging. VDAC2, located in the outer mitochondrial membrane (MOM), is a key apoptosis regulator, but its role in cashmere goat hair follicles remains unclear. In previous studies, through proteomic sequencing, we found that VDAC2 was significantly differentially expressed in the anagen, catagen, and telogen phases of the hair follicles of Albas cashmere goats. This study aimed to explore the role of VDAC2 in secondary hair follicle stem cells (SHFSCs) and preliminarily investigate its regulatory mechanism through RNA-seq. Overexpression of VDAC2 promoted apoptosis in SHFSCs, while knockdown had the opposite effect. RNA-seq analysis, together with expression validation of downstream genes, indicates that the P53 signaling pathway may be involved in VDAC2-mediated SHFSC regulation. RT-qPCR and Western blotting confirmed that VDAC2 activated the P53 signaling pathway in SHFSCs. Furthermore, the use of a P53 inhibitor after VDAC2 overexpression partially rescued the apoptosis of cells caused by VDAC2. These results demonstrate that VDAC2 plays an important role in SHFSC apoptosis. Our findings greatly enhance our understanding of the role of VDAC2 in SHFSC apoptosis and hair follicle growth.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153577/pdf/","citationCount":"0","resultStr":"{\"title\":\"VDAC2 Mediates the Apoptosis of Cashmere Goat Hair Follicle Stem Cells Through the P53 Signaling Pathway.\",\"authors\":\"Long Zhu, Yueqi Zhao, Mei Zhou, Xiaotong Guo, Yinxian Zhang, Dongjun Liu, Xudong Guo\",\"doi\":\"10.3390/ani15111671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hair follicle stem cells (HFSCs) are pluripotent stem cells located in the bulges of hair follicles. Apoptosis regulates tissue homeostasis by eliminating unnecessary or damaged cells during development and aging. VDAC2, located in the outer mitochondrial membrane (MOM), is a key apoptosis regulator, but its role in cashmere goat hair follicles remains unclear. In previous studies, through proteomic sequencing, we found that VDAC2 was significantly differentially expressed in the anagen, catagen, and telogen phases of the hair follicles of Albas cashmere goats. This study aimed to explore the role of VDAC2 in secondary hair follicle stem cells (SHFSCs) and preliminarily investigate its regulatory mechanism through RNA-seq. Overexpression of VDAC2 promoted apoptosis in SHFSCs, while knockdown had the opposite effect. RNA-seq analysis, together with expression validation of downstream genes, indicates that the P53 signaling pathway may be involved in VDAC2-mediated SHFSC regulation. RT-qPCR and Western blotting confirmed that VDAC2 activated the P53 signaling pathway in SHFSCs. Furthermore, the use of a P53 inhibitor after VDAC2 overexpression partially rescued the apoptosis of cells caused by VDAC2. These results demonstrate that VDAC2 plays an important role in SHFSC apoptosis. Our findings greatly enhance our understanding of the role of VDAC2 in SHFSC apoptosis and hair follicle growth.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"15 11\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153577/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani15111671\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15111671","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
VDAC2 Mediates the Apoptosis of Cashmere Goat Hair Follicle Stem Cells Through the P53 Signaling Pathway.
Hair follicle stem cells (HFSCs) are pluripotent stem cells located in the bulges of hair follicles. Apoptosis regulates tissue homeostasis by eliminating unnecessary or damaged cells during development and aging. VDAC2, located in the outer mitochondrial membrane (MOM), is a key apoptosis regulator, but its role in cashmere goat hair follicles remains unclear. In previous studies, through proteomic sequencing, we found that VDAC2 was significantly differentially expressed in the anagen, catagen, and telogen phases of the hair follicles of Albas cashmere goats. This study aimed to explore the role of VDAC2 in secondary hair follicle stem cells (SHFSCs) and preliminarily investigate its regulatory mechanism through RNA-seq. Overexpression of VDAC2 promoted apoptosis in SHFSCs, while knockdown had the opposite effect. RNA-seq analysis, together with expression validation of downstream genes, indicates that the P53 signaling pathway may be involved in VDAC2-mediated SHFSC regulation. RT-qPCR and Western blotting confirmed that VDAC2 activated the P53 signaling pathway in SHFSCs. Furthermore, the use of a P53 inhibitor after VDAC2 overexpression partially rescued the apoptosis of cells caused by VDAC2. These results demonstrate that VDAC2 plays an important role in SHFSC apoptosis. Our findings greatly enhance our understanding of the role of VDAC2 in SHFSC apoptosis and hair follicle growth.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).