高盐度导致河口无脊椎动物群的急剧变化。

IF 2.7 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Animals Pub Date : 2025-06-01 DOI:10.3390/ani15111629
Ben J Roots, Ruth Lim, Stephanie A Fourie, Essie M Rodgers, Emily J Stout, Sorcha Cronin-O'Reilly, James R Tweedley
{"title":"高盐度导致河口无脊椎动物群的急剧变化。","authors":"Ben J Roots, Ruth Lim, Stephanie A Fourie, Essie M Rodgers, Emily J Stout, Sorcha Cronin-O'Reilly, James R Tweedley","doi":"10.3390/ani15111629","DOIUrl":null,"url":null,"abstract":"<p><p>In some estuaries, low inflow and/or isolation from the ocean can result in evapoconcentration and hypersalinity (≥40 ppt). This can create osmoregulatory and energetic challenges for the faunal community, leading to reductions in diversity as more species pass their thresholds. As climate change is increasing the magnitude and duration of hypersaline conditions, we used benthic macroinvertebrate data from 12 estuaries across a Mediterranean climatic region (southwestern Australia) to assess the influence of salinity (0-122 ppt) on the invertebrate fauna. Taxa richness and diversity were highest in salinities between 0 and 39 ppt, peaking at salinities closest to seawater, while total density peaked at 40-49 ppt. Beyond 50 ppt, these measures declined significantly. Community composition changed markedly along the salinity gradient. In lower salinities, communities were diverse, comprising polychaetes, malacostracans, hexapods, ostracods, bivalves, and gastropods. However, in salinities ≥50 ppt, many taxa declined, leading to communities dominated by polychaetes (mainly <i>Capitella</i> spp.) and hexapods (mostly larval chironomids). At 90 ppt, only polychaetes and hexapods remained, and at ≥110 ppt, only the latter taxon persisted. This faunal shift towards insect dominance in hypersaline conditions mirrors observations in other Mediterranean and arid/semi-arid regions, with the resulting communities resembling saline wetlands or salt lakes. This loss of invertebrates can substantially impact ecosystem functioning and trophic pathways, and the findings of this study provide a basis for predicting how these communities will respond to increasing hypersalinity driven by climate change.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153658/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hypersalinity Drives Dramatic Shifts in the Invertebrate Fauna of Estuaries.\",\"authors\":\"Ben J Roots, Ruth Lim, Stephanie A Fourie, Essie M Rodgers, Emily J Stout, Sorcha Cronin-O'Reilly, James R Tweedley\",\"doi\":\"10.3390/ani15111629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In some estuaries, low inflow and/or isolation from the ocean can result in evapoconcentration and hypersalinity (≥40 ppt). This can create osmoregulatory and energetic challenges for the faunal community, leading to reductions in diversity as more species pass their thresholds. As climate change is increasing the magnitude and duration of hypersaline conditions, we used benthic macroinvertebrate data from 12 estuaries across a Mediterranean climatic region (southwestern Australia) to assess the influence of salinity (0-122 ppt) on the invertebrate fauna. Taxa richness and diversity were highest in salinities between 0 and 39 ppt, peaking at salinities closest to seawater, while total density peaked at 40-49 ppt. Beyond 50 ppt, these measures declined significantly. Community composition changed markedly along the salinity gradient. In lower salinities, communities were diverse, comprising polychaetes, malacostracans, hexapods, ostracods, bivalves, and gastropods. However, in salinities ≥50 ppt, many taxa declined, leading to communities dominated by polychaetes (mainly <i>Capitella</i> spp.) and hexapods (mostly larval chironomids). At 90 ppt, only polychaetes and hexapods remained, and at ≥110 ppt, only the latter taxon persisted. This faunal shift towards insect dominance in hypersaline conditions mirrors observations in other Mediterranean and arid/semi-arid regions, with the resulting communities resembling saline wetlands or salt lakes. This loss of invertebrates can substantially impact ecosystem functioning and trophic pathways, and the findings of this study provide a basis for predicting how these communities will respond to increasing hypersalinity driven by climate change.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"15 11\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153658/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani15111629\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15111629","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在一些河口,低入海口和/或与海洋隔绝可导致蒸发浓缩和高盐度(≥40ppt)。这可能对动物群落造成渗透调节和能量挑战,随着更多物种超过其阈值,导致多样性减少。由于气候变化增加了高盐条件的强度和持续时间,我们使用了地中海气候区(澳大利亚西南部)12个河口的底栖大型无脊椎动物数据来评估盐度(0-122 ppt)对无脊椎动物动物群的影响。物种丰富度和多样性在盐度0 ~ 39 ppt之间最高,在最靠近海水的盐度达到峰值,而总密度在40 ~ 49 ppt之间达到峰值。超过50个百分点后,这些指标显著下降。群落组成沿盐度梯度变化明显。在较低的盐度,群落多样,包括多毛类、甲壳类、六足类、介形虫、双壳类和腹足类。但在盐度≥50 ppt时,许多类群减少,群落以多毛纲(小头纲)和六足纲(幼虫手尾纲)为主。在90 ppt时,只剩下多毛类和六足类,在≥110 ppt时,只剩下后者。在高盐条件下,这种向昆虫优势的动物群转变反映了在其他地中海和干旱/半干旱地区的观察结果,由此产生的群落类似于含盐湿地或盐湖。无脊椎动物的减少会严重影响生态系统功能和营养途径,本研究的发现为预测这些群落如何应对气候变化导致的高盐度增加提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypersalinity Drives Dramatic Shifts in the Invertebrate Fauna of Estuaries.

In some estuaries, low inflow and/or isolation from the ocean can result in evapoconcentration and hypersalinity (≥40 ppt). This can create osmoregulatory and energetic challenges for the faunal community, leading to reductions in diversity as more species pass their thresholds. As climate change is increasing the magnitude and duration of hypersaline conditions, we used benthic macroinvertebrate data from 12 estuaries across a Mediterranean climatic region (southwestern Australia) to assess the influence of salinity (0-122 ppt) on the invertebrate fauna. Taxa richness and diversity were highest in salinities between 0 and 39 ppt, peaking at salinities closest to seawater, while total density peaked at 40-49 ppt. Beyond 50 ppt, these measures declined significantly. Community composition changed markedly along the salinity gradient. In lower salinities, communities were diverse, comprising polychaetes, malacostracans, hexapods, ostracods, bivalves, and gastropods. However, in salinities ≥50 ppt, many taxa declined, leading to communities dominated by polychaetes (mainly Capitella spp.) and hexapods (mostly larval chironomids). At 90 ppt, only polychaetes and hexapods remained, and at ≥110 ppt, only the latter taxon persisted. This faunal shift towards insect dominance in hypersaline conditions mirrors observations in other Mediterranean and arid/semi-arid regions, with the resulting communities resembling saline wetlands or salt lakes. This loss of invertebrates can substantially impact ecosystem functioning and trophic pathways, and the findings of this study provide a basis for predicting how these communities will respond to increasing hypersalinity driven by climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Animals
Animals Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍: Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信