{"title":"探索抗sars - cov -2天然产物:飞燕草苷对双病毒靶点的抑制作用和桔梗素D的抗冠状病毒作用。","authors":"Jiani Lu, Yan Tang, Hongtao Li, Saisai Tian, Xixiang Chen, Xueyue Song, Pengcheng Qin, Jianrong Xu, Haiyan Zhu, Liqiang Ni, Huarong Du, Weidong Zhang, Weihua Li, Lili Chen","doi":"10.1007/s13659-025-00523-w","DOIUrl":null,"url":null,"abstract":"<p><p>Qingfei Paidu decoction (QFPDD) has been extensively used in clinical treatments during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic. SARS-CoV-2 primarily invades host cells via its spike (S) protein binding to the angiotensin-converting enzyme 2 (ACE2) on the cell membrane, mediating viral-host membrane fusion. Blocking viral entry is a crucial step in preventing infection, with the interaction between the S receptor binding domain (S-RBD) and ACE2 being a key antiviral target. Given that SARS-CoV-2 predominantly affects the respiratory system and approximately 25% of patients suffering from corona virus disease 2019 (COVID-19) with gastrointestinal symptoms, we are committed to identifying more active ingredients in QFPDD that target the respiratory and gastrointestinal tracts of COVID-19 patients. Among medicinal plants, ephedra and liquorice derived from QFPDD, along with two other Chinese herbs, Platycodon grandiflorum and Radix Rhei Et Rhizome (rhubarb), have garnered our interest. These herbs have historically been used in traditional Chinese medicine (TCM) for treating infectious diseases with respiratory and digestive symptoms. Here, we established a library containing all components of the four individual herbs gathered from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and performed structure-based virtual screening to identify potential ACE2/S-RBD inhibitors. Subsequently, we selected 10 ingredients from the top 30 candidates and evaluated their activities using a pseudovirus neutralization assay. Delphinidin and deapio platycodin D (DPD) showed significant antiviral potential with half-maximal inhibitory concentration (IC<sub>50</sub>) values of 45.35 µM and 1.38 µM, respectively. Furthermore, delphinidin also inhibited the 3-chymotrypsin-like protease (3CL<sup>pro</sup>), indicating its dual-viral target inhibitory potential. Notably, DPD effectively suppressed HCoV-229E replication in BEL-7402 cells. This study not only provides a strategy for rapid identifying antiviral agents from TCM in anticipation of future pandemics but also offers theoretical and experimental evidence to support for the clinical use of QFPDD.</p>","PeriodicalId":718,"journal":{"name":"Natural Products and Bioprospecting","volume":"15 1","pages":"39"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12165925/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring anti-SARS-CoV-2 natural products: dual-viral target inhibition by delphinidin and the anti-coronaviral efficacy of deapio platycodin D.\",\"authors\":\"Jiani Lu, Yan Tang, Hongtao Li, Saisai Tian, Xixiang Chen, Xueyue Song, Pengcheng Qin, Jianrong Xu, Haiyan Zhu, Liqiang Ni, Huarong Du, Weidong Zhang, Weihua Li, Lili Chen\",\"doi\":\"10.1007/s13659-025-00523-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Qingfei Paidu decoction (QFPDD) has been extensively used in clinical treatments during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic. SARS-CoV-2 primarily invades host cells via its spike (S) protein binding to the angiotensin-converting enzyme 2 (ACE2) on the cell membrane, mediating viral-host membrane fusion. Blocking viral entry is a crucial step in preventing infection, with the interaction between the S receptor binding domain (S-RBD) and ACE2 being a key antiviral target. Given that SARS-CoV-2 predominantly affects the respiratory system and approximately 25% of patients suffering from corona virus disease 2019 (COVID-19) with gastrointestinal symptoms, we are committed to identifying more active ingredients in QFPDD that target the respiratory and gastrointestinal tracts of COVID-19 patients. Among medicinal plants, ephedra and liquorice derived from QFPDD, along with two other Chinese herbs, Platycodon grandiflorum and Radix Rhei Et Rhizome (rhubarb), have garnered our interest. These herbs have historically been used in traditional Chinese medicine (TCM) for treating infectious diseases with respiratory and digestive symptoms. Here, we established a library containing all components of the four individual herbs gathered from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and performed structure-based virtual screening to identify potential ACE2/S-RBD inhibitors. Subsequently, we selected 10 ingredients from the top 30 candidates and evaluated their activities using a pseudovirus neutralization assay. Delphinidin and deapio platycodin D (DPD) showed significant antiviral potential with half-maximal inhibitory concentration (IC<sub>50</sub>) values of 45.35 µM and 1.38 µM, respectively. Furthermore, delphinidin also inhibited the 3-chymotrypsin-like protease (3CL<sup>pro</sup>), indicating its dual-viral target inhibitory potential. Notably, DPD effectively suppressed HCoV-229E replication in BEL-7402 cells. This study not only provides a strategy for rapid identifying antiviral agents from TCM in anticipation of future pandemics but also offers theoretical and experimental evidence to support for the clinical use of QFPDD.</p>\",\"PeriodicalId\":718,\"journal\":{\"name\":\"Natural Products and Bioprospecting\",\"volume\":\"15 1\",\"pages\":\"39\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12165925/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Products and Bioprospecting\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s13659-025-00523-w\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Products and Bioprospecting","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s13659-025-00523-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
清肺排毒汤在SARS-CoV-2流行期间被广泛应用于临床治疗。SARS-CoV-2主要通过其刺突(S)蛋白与细胞膜上的血管紧张素转换酶2 (ACE2)结合侵入宿主细胞,介导病毒与宿主膜融合。阻断病毒进入是预防感染的关键步骤,S受体结合域(S- rbd)和ACE2之间的相互作用是关键的抗病毒靶点。鉴于SARS-CoV-2主要影响呼吸系统,约25%的2019冠状病毒病(COVID-19)患者有胃肠道症状,我们致力于在QFPDD中发现更多针对COVID-19患者呼吸道和胃肠道的活性成分。在药用植物中,来自QFPDD的麻黄和甘草,以及其他两种中草药,桔梗和大黄,引起了我们的兴趣。这些草药历来被用于传统中医(TCM)治疗呼吸道和消化系统症状的传染病。在这里,我们建立了一个包含从中药系统药理学数据库和分析平台(TCMSP)中收集的四种单独草药的所有成分的文库,并进行了基于结构的虚拟筛选,以鉴定潜在的ACE2/S-RBD抑制剂。随后,我们从前30个候选成分中选择了10种成分,并使用假病毒中和试验评估了它们的活性。Delphinidin和deapio platycodin D (DPD)表现出显著的抗病毒潜力,半最大抑制浓度(IC50)分别为45.35µM和1.38µM。此外,飞燕草苷还能抑制3-糜凝胰蛋白酶样蛋白酶(3CLpro),表明其具有抑制双病毒靶标的潜力。值得注意的是,DPD有效抑制了BEL-7402细胞中HCoV-229E的复制。本研究不仅为预测未来流感大流行提供了从中药中快速识别抗病毒药物的策略,而且为QFPDD的临床应用提供了理论和实验证据。
Exploring anti-SARS-CoV-2 natural products: dual-viral target inhibition by delphinidin and the anti-coronaviral efficacy of deapio platycodin D.
Qingfei Paidu decoction (QFPDD) has been extensively used in clinical treatments during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic. SARS-CoV-2 primarily invades host cells via its spike (S) protein binding to the angiotensin-converting enzyme 2 (ACE2) on the cell membrane, mediating viral-host membrane fusion. Blocking viral entry is a crucial step in preventing infection, with the interaction between the S receptor binding domain (S-RBD) and ACE2 being a key antiviral target. Given that SARS-CoV-2 predominantly affects the respiratory system and approximately 25% of patients suffering from corona virus disease 2019 (COVID-19) with gastrointestinal symptoms, we are committed to identifying more active ingredients in QFPDD that target the respiratory and gastrointestinal tracts of COVID-19 patients. Among medicinal plants, ephedra and liquorice derived from QFPDD, along with two other Chinese herbs, Platycodon grandiflorum and Radix Rhei Et Rhizome (rhubarb), have garnered our interest. These herbs have historically been used in traditional Chinese medicine (TCM) for treating infectious diseases with respiratory and digestive symptoms. Here, we established a library containing all components of the four individual herbs gathered from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and performed structure-based virtual screening to identify potential ACE2/S-RBD inhibitors. Subsequently, we selected 10 ingredients from the top 30 candidates and evaluated their activities using a pseudovirus neutralization assay. Delphinidin and deapio platycodin D (DPD) showed significant antiviral potential with half-maximal inhibitory concentration (IC50) values of 45.35 µM and 1.38 µM, respectively. Furthermore, delphinidin also inhibited the 3-chymotrypsin-like protease (3CLpro), indicating its dual-viral target inhibitory potential. Notably, DPD effectively suppressed HCoV-229E replication in BEL-7402 cells. This study not only provides a strategy for rapid identifying antiviral agents from TCM in anticipation of future pandemics but also offers theoretical and experimental evidence to support for the clinical use of QFPDD.
期刊介绍:
Natural Products and Bioprospecting serves as an international forum for essential research on natural products and focuses on, but is not limited to, the following aspects:
Natural products: isolation and structure elucidation
Natural products: synthesis
Biological evaluation of biologically active natural products
Bioorganic and medicinal chemistry
Biosynthesis and microbiological transformation
Fermentation and plant tissue cultures
Bioprospecting of natural products from natural resources
All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Natural Products and Bioprospecting publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of natural products. It is also an open access journal, which provides free access to its articles to anyone, anywhere.