Caitlin A McCadden, Diana P Łomowska-Keehner, Tracy Qu, Jordan Nafie, Tyler A Alsup, Jeffrey D Rudolf
{"title":"链霉菌中一种类植物三结构域双功能syn-abieta-7,13-二烯合成酶的发现。","authors":"Caitlin A McCadden, Diana P Łomowska-Keehner, Tracy Qu, Jordan Nafie, Tyler A Alsup, Jeffrey D Rudolf","doi":"10.1039/d5ob00724k","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria have been long proposed to harbor ancestral forms of the bifunctional terpene synthases found in plants. Recent studies described the first identification of these fused bacterial diterpene cyclases/synthases (DCSs). Using genome mining, we found candidate proteins in bacteria that were bioinformatically identified to possess both classes of terpene synthase domains. Here, we report the discovery of a plant-like tridomain bifunctional DCS from <i>Streptomyces albulus</i>. A diterpene overproduction system in <i>E. coli</i> enabled the isolation and structural elucidation of <i>syn</i>-abieta-7,13-diene by NMR, GC-MS, and VCD.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12164552/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovery of a plant-like tridomain bifunctional <i>syn</i>-abieta-7,13-diene synthase in <i>Streptomyces</i>.\",\"authors\":\"Caitlin A McCadden, Diana P Łomowska-Keehner, Tracy Qu, Jordan Nafie, Tyler A Alsup, Jeffrey D Rudolf\",\"doi\":\"10.1039/d5ob00724k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteria have been long proposed to harbor ancestral forms of the bifunctional terpene synthases found in plants. Recent studies described the first identification of these fused bacterial diterpene cyclases/synthases (DCSs). Using genome mining, we found candidate proteins in bacteria that were bioinformatically identified to possess both classes of terpene synthase domains. Here, we report the discovery of a plant-like tridomain bifunctional DCS from <i>Streptomyces albulus</i>. A diterpene overproduction system in <i>E. coli</i> enabled the isolation and structural elucidation of <i>syn</i>-abieta-7,13-diene by NMR, GC-MS, and VCD.</p>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12164552/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5ob00724k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ob00724k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Discovery of a plant-like tridomain bifunctional syn-abieta-7,13-diene synthase in Streptomyces.
Bacteria have been long proposed to harbor ancestral forms of the bifunctional terpene synthases found in plants. Recent studies described the first identification of these fused bacterial diterpene cyclases/synthases (DCSs). Using genome mining, we found candidate proteins in bacteria that were bioinformatically identified to possess both classes of terpene synthase domains. Here, we report the discovery of a plant-like tridomain bifunctional DCS from Streptomyces albulus. A diterpene overproduction system in E. coli enabled the isolation and structural elucidation of syn-abieta-7,13-diene by NMR, GC-MS, and VCD.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.