Jing Niu, Xinzhi Ding, Shutao Xu, Yingxu Wei, Zhongmin Liu
{"title":"利用先进的固体核磁共振技术,研究了沸石催化甲醇转化为烯烃和乙醇的分子机理和工业过程。","authors":"Jing Niu, Xinzhi Ding, Shutao Xu, Yingxu Wei, Zhongmin Liu","doi":"10.1039/d5cs00341e","DOIUrl":null,"url":null,"abstract":"<p><p>Zeolite-catalyzed methanol-to-olefin (MTO) and methanol-to-ethanol (MTE) reactions have achieved significant breakthroughs in both industry and academia, proving to be mature alternative pathways for producing basic chemicals from non-oil resources. The successful transition of these catalytic processes from laboratory to industrial implementation has been propelled by fundamental breakthroughs in the comprehensive understanding of reaction mechanisms. In this context, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has emerged as an indispensable tool for elucidating catalyst structures, catalytic reaction mechanisms, and the interactions and dynamics of reactant molecules in these industrially important processes. This review specifically focuses on the application of ssNMR spectroscopy in industrially mature MTO and dimethyl ether (DME) carbonylation processes, which serve as representative examples of zeolite-catalyzed industrial processes. Based on this molecular-level information from spectroscopic observations combined with theoretical methods, this review aims to bridge the fundamental understandings of reaction mechanisms with practical applications, including the rationalization of catalysts, the optimization of catalytic performance, and the improvement of industrial processes.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the molecular mechanism and industrial process of zeolite-catalyzed methanol conversion to olefins and ethanol using advanced solid-state NMR spectroscopy.\",\"authors\":\"Jing Niu, Xinzhi Ding, Shutao Xu, Yingxu Wei, Zhongmin Liu\",\"doi\":\"10.1039/d5cs00341e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zeolite-catalyzed methanol-to-olefin (MTO) and methanol-to-ethanol (MTE) reactions have achieved significant breakthroughs in both industry and academia, proving to be mature alternative pathways for producing basic chemicals from non-oil resources. The successful transition of these catalytic processes from laboratory to industrial implementation has been propelled by fundamental breakthroughs in the comprehensive understanding of reaction mechanisms. In this context, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has emerged as an indispensable tool for elucidating catalyst structures, catalytic reaction mechanisms, and the interactions and dynamics of reactant molecules in these industrially important processes. This review specifically focuses on the application of ssNMR spectroscopy in industrially mature MTO and dimethyl ether (DME) carbonylation processes, which serve as representative examples of zeolite-catalyzed industrial processes. Based on this molecular-level information from spectroscopic observations combined with theoretical methods, this review aims to bridge the fundamental understandings of reaction mechanisms with practical applications, including the rationalization of catalysts, the optimization of catalytic performance, and the improvement of industrial processes.</p>\",\"PeriodicalId\":68,\"journal\":{\"name\":\"Chemical Society Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":40.4000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Society Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5cs00341e\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cs00341e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bridging the molecular mechanism and industrial process of zeolite-catalyzed methanol conversion to olefins and ethanol using advanced solid-state NMR spectroscopy.
Zeolite-catalyzed methanol-to-olefin (MTO) and methanol-to-ethanol (MTE) reactions have achieved significant breakthroughs in both industry and academia, proving to be mature alternative pathways for producing basic chemicals from non-oil resources. The successful transition of these catalytic processes from laboratory to industrial implementation has been propelled by fundamental breakthroughs in the comprehensive understanding of reaction mechanisms. In this context, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has emerged as an indispensable tool for elucidating catalyst structures, catalytic reaction mechanisms, and the interactions and dynamics of reactant molecules in these industrially important processes. This review specifically focuses on the application of ssNMR spectroscopy in industrially mature MTO and dimethyl ether (DME) carbonylation processes, which serve as representative examples of zeolite-catalyzed industrial processes. Based on this molecular-level information from spectroscopic observations combined with theoretical methods, this review aims to bridge the fundamental understandings of reaction mechanisms with practical applications, including the rationalization of catalysts, the optimization of catalytic performance, and the improvement of industrial processes.
期刊介绍:
Chemical Society Reviews is published by: Royal Society of Chemistry.
Focus: Review articles on topics of current interest in chemistry;
Predecessors: Quarterly Reviews, Chemical Society (1947–1971);
Current title: Since 1971;
Impact factor: 60.615 (2021);
Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences