半金属MoTe2层间滑动触发偶极子形成的原子水平直接观察。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lin Liao, Xianli Su*, Hao Luo, Xili Wen, Yin Dai, Keke Liu, Haoran Ge, Qingjie Zhang, Menghao Wu*, Xinfeng Tang* and Jinsong Wu*, 
{"title":"半金属MoTe2层间滑动触发偶极子形成的原子水平直接观察。","authors":"Lin Liao,&nbsp;Xianli Su*,&nbsp;Hao Luo,&nbsp;Xili Wen,&nbsp;Yin Dai,&nbsp;Keke Liu,&nbsp;Haoran Ge,&nbsp;Qingjie Zhang,&nbsp;Menghao Wu*,&nbsp;Xinfeng Tang* and Jinsong Wu*,&nbsp;","doi":"10.1021/acs.nanolett.5c02590","DOIUrl":null,"url":null,"abstract":"<p >Octahedral MoTe<sub>2</sub> is a nonpolar 1T′ phase and transforms into polar T<sub>d</sub> phase at ∼260 K, along with the change of the layer stacking order. However, as it is difficult to capture the interlayer sliding at atomic resolution, the polarization formation mechanism of MoTe<sub>2</sub> by cooling to low temperature remains largely unclear. Here, we address the challenge by in situ cryo-(S)TEM to trace the interlayer sliding at the atomic level and the induced polarization in vdW-layered MoTe<sub>2</sub>. When it is in the range of 300–193 K, we observed the step-by-step formation of the local T<sub>d</sub> domain within the 1T′-I domain. Moreover, we present an atomic-scale observation of the disordered mixed stacking of 1T′/T<sub>d</sub> phases at 110 K. Two possible sliding models are built with the sliding energy barriers (2.7 and 5.3 meV/u.c.), indicating thermally accessible sliding behavior. Our investigation of sliding-induced polarization provides meaningful insights for developing sliding ferroelectric-based nonvolatile memory devices.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 25","pages":"10246–10253"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Observation of Dipole Formation Triggered by Interlayer Sliding at Atomic Level in Semimetal MoTe2\",\"authors\":\"Lin Liao,&nbsp;Xianli Su*,&nbsp;Hao Luo,&nbsp;Xili Wen,&nbsp;Yin Dai,&nbsp;Keke Liu,&nbsp;Haoran Ge,&nbsp;Qingjie Zhang,&nbsp;Menghao Wu*,&nbsp;Xinfeng Tang* and Jinsong Wu*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c02590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Octahedral MoTe<sub>2</sub> is a nonpolar 1T′ phase and transforms into polar T<sub>d</sub> phase at ∼260 K, along with the change of the layer stacking order. However, as it is difficult to capture the interlayer sliding at atomic resolution, the polarization formation mechanism of MoTe<sub>2</sub> by cooling to low temperature remains largely unclear. Here, we address the challenge by in situ cryo-(S)TEM to trace the interlayer sliding at the atomic level and the induced polarization in vdW-layered MoTe<sub>2</sub>. When it is in the range of 300–193 K, we observed the step-by-step formation of the local T<sub>d</sub> domain within the 1T′-I domain. Moreover, we present an atomic-scale observation of the disordered mixed stacking of 1T′/T<sub>d</sub> phases at 110 K. Two possible sliding models are built with the sliding energy barriers (2.7 and 5.3 meV/u.c.), indicating thermally accessible sliding behavior. Our investigation of sliding-induced polarization provides meaningful insights for developing sliding ferroelectric-based nonvolatile memory devices.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 25\",\"pages\":\"10246–10253\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02590\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02590","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

八面体MoTe2为非极性1T′相,在~ 260 K时随层序的改变转变为极性Td相。然而,由于很难在原子分辨率上捕获层间滑动,因此冷却至低温后MoTe2的极化形成机制仍不清楚。在这里,我们解决了原位低温透射电镜在原子水平上追踪层间滑动和vdw层MoTe2的诱导极化的挑战。在300 ~ 193 K范围内,我们观察到在1T′-I域中逐步形成局部Td域。此外,我们还在110 K下对1T′/Td相的无序混合叠加进行了原子尺度的观察。利用滑动能垒(2.7和5.3 meV/u.c)建立了两种可能的滑动模型,表明了热可及的滑动行为。我们对滑动诱导极化的研究为开发基于滑动铁电的非易失性存储器件提供了有意义的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Direct Observation of Dipole Formation Triggered by Interlayer Sliding at Atomic Level in Semimetal MoTe2

Direct Observation of Dipole Formation Triggered by Interlayer Sliding at Atomic Level in Semimetal MoTe2

Direct Observation of Dipole Formation Triggered by Interlayer Sliding at Atomic Level in Semimetal MoTe2

Octahedral MoTe2 is a nonpolar 1T′ phase and transforms into polar Td phase at ∼260 K, along with the change of the layer stacking order. However, as it is difficult to capture the interlayer sliding at atomic resolution, the polarization formation mechanism of MoTe2 by cooling to low temperature remains largely unclear. Here, we address the challenge by in situ cryo-(S)TEM to trace the interlayer sliding at the atomic level and the induced polarization in vdW-layered MoTe2. When it is in the range of 300–193 K, we observed the step-by-step formation of the local Td domain within the 1T′-I domain. Moreover, we present an atomic-scale observation of the disordered mixed stacking of 1T′/Td phases at 110 K. Two possible sliding models are built with the sliding energy barriers (2.7 and 5.3 meV/u.c.), indicating thermally accessible sliding behavior. Our investigation of sliding-induced polarization provides meaningful insights for developing sliding ferroelectric-based nonvolatile memory devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信