{"title":"能量滤波激发态与轮廓积分中的实时动力学。","authors":"Ke Liao","doi":"10.1021/acs.jctc.4c01220","DOIUrl":null,"url":null,"abstract":"<p><p>It is observed that the Cauchy integral formula (CIF) can be used to represent holomorphic functions of diagonalizable operators on a finite domain. This forms the theoretical foundation for applying various operators in the form of a contour integral to a state, while filtering away eigen-components that are not included by the contour. As a special case, the identity operator in the integral form─the Riesz projector─is used to design an algorithm for finding a given number of eigen-pairs whose energies are close to a specified value in the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) framework, with applications to calculate core excited states of molecules which is relevant for the X-ray absorption spectroscopy (XAS). As a generalization, I showcase a novel real-time electron dynamics (RT-EOM-CCSD) algorithm based on the CIF form of the exponential time-evolution operator, which admits extremely large time steps while preserving accurate spectral information.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Filtered Excited States and Real-Time Dynamics Served in a Contour Integral.\",\"authors\":\"Ke Liao\",\"doi\":\"10.1021/acs.jctc.4c01220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is observed that the Cauchy integral formula (CIF) can be used to represent holomorphic functions of diagonalizable operators on a finite domain. This forms the theoretical foundation for applying various operators in the form of a contour integral to a state, while filtering away eigen-components that are not included by the contour. As a special case, the identity operator in the integral form─the Riesz projector─is used to design an algorithm for finding a given number of eigen-pairs whose energies are close to a specified value in the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) framework, with applications to calculate core excited states of molecules which is relevant for the X-ray absorption spectroscopy (XAS). As a generalization, I showcase a novel real-time electron dynamics (RT-EOM-CCSD) algorithm based on the CIF form of the exponential time-evolution operator, which admits extremely large time steps while preserving accurate spectral information.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c01220\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01220","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Energy-Filtered Excited States and Real-Time Dynamics Served in a Contour Integral.
It is observed that the Cauchy integral formula (CIF) can be used to represent holomorphic functions of diagonalizable operators on a finite domain. This forms the theoretical foundation for applying various operators in the form of a contour integral to a state, while filtering away eigen-components that are not included by the contour. As a special case, the identity operator in the integral form─the Riesz projector─is used to design an algorithm for finding a given number of eigen-pairs whose energies are close to a specified value in the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) framework, with applications to calculate core excited states of molecules which is relevant for the X-ray absorption spectroscopy (XAS). As a generalization, I showcase a novel real-time electron dynamics (RT-EOM-CCSD) algorithm based on the CIF form of the exponential time-evolution operator, which admits extremely large time steps while preserving accurate spectral information.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.