Juho Alaviuhkola, Sondos Abdulmajeed, Sven T Sowa, Johan Pääkkönen, Lari Lehtiö
{"title":"细菌Arr酶adp -核糖基化和利福霉素抗生素灭活抑制剂的发现。","authors":"Juho Alaviuhkola, Sondos Abdulmajeed, Sven T Sowa, Johan Pääkkönen, Lari Lehtiö","doi":"10.1021/acschembio.5c00164","DOIUrl":null,"url":null,"abstract":"<p><p>ADP-ribosylation is an enzymatic process where an ADP-ribose moiety is transferred from NAD<sup>+</sup> to an acceptor molecule. While ADP-ribosylation is well-established as a post-translational modification of proteins, rifamycin antibiotics are its only known small-molecule targets. ADP-ribosylation of rifampicin was first identified in <i>Mycolicibacterium smegmatis</i>, whose Arr enzyme transfers the ADP-ribose moiety to the 23-hydroxy group of rifampicin preventing its interaction with the bacterial RNA polymerase thereby inactivating the antibiotic. Arr homologues are widely spread among bacterial species and present in several pathogenic species often associated with mobile genetic elements. Inhibition of Arr enzymes offers a promising strategy to overcome ADP-ribosylation mediated rifamycin resistance. We developed a high-throughput activity assay which was applied to screen an in-house library of human ADP-ribosyltransferase-targeted compounds. We identified 15 inhibitors with IC<sub>50</sub> values below 5 μM against four Arr enzymes from <i>M. smegmatis</i>, <i>Pseudomonas aeruginosa</i>, <i>Stenotrophomonas maltophilia</i>, and <i>Mycobacteroides abscessus</i>. The observed overall selectivity of the hit compounds over the other homologues indicated structural differences between the proteins. We crystallized <i>M. smegmatis</i> and <i>P. aeruginosa</i> Arr enzymes, the former in complex with its most potent hit compound with an IC<sub>50</sub> value of 1.3 μM. We observed structural differences in the NAD<sup>+</sup> binding pockets of the two Arr homologues explaining the selectivity. Although the Arr inhibitors did not sensitize <i>M. smegmatis</i> to rifampicin in a growth inhibition assay, the structural information and the collection of inhibitors provide a foundation for rational modifications and further development of the compounds.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of Inhibitors for Bacterial Arr Enzymes ADP-Ribosylating and Inactivating Rifamycin Antibiotics.\",\"authors\":\"Juho Alaviuhkola, Sondos Abdulmajeed, Sven T Sowa, Johan Pääkkönen, Lari Lehtiö\",\"doi\":\"10.1021/acschembio.5c00164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ADP-ribosylation is an enzymatic process where an ADP-ribose moiety is transferred from NAD<sup>+</sup> to an acceptor molecule. While ADP-ribosylation is well-established as a post-translational modification of proteins, rifamycin antibiotics are its only known small-molecule targets. ADP-ribosylation of rifampicin was first identified in <i>Mycolicibacterium smegmatis</i>, whose Arr enzyme transfers the ADP-ribose moiety to the 23-hydroxy group of rifampicin preventing its interaction with the bacterial RNA polymerase thereby inactivating the antibiotic. Arr homologues are widely spread among bacterial species and present in several pathogenic species often associated with mobile genetic elements. Inhibition of Arr enzymes offers a promising strategy to overcome ADP-ribosylation mediated rifamycin resistance. We developed a high-throughput activity assay which was applied to screen an in-house library of human ADP-ribosyltransferase-targeted compounds. We identified 15 inhibitors with IC<sub>50</sub> values below 5 μM against four Arr enzymes from <i>M. smegmatis</i>, <i>Pseudomonas aeruginosa</i>, <i>Stenotrophomonas maltophilia</i>, and <i>Mycobacteroides abscessus</i>. The observed overall selectivity of the hit compounds over the other homologues indicated structural differences between the proteins. We crystallized <i>M. smegmatis</i> and <i>P. aeruginosa</i> Arr enzymes, the former in complex with its most potent hit compound with an IC<sub>50</sub> value of 1.3 μM. We observed structural differences in the NAD<sup>+</sup> binding pockets of the two Arr homologues explaining the selectivity. Although the Arr inhibitors did not sensitize <i>M. smegmatis</i> to rifampicin in a growth inhibition assay, the structural information and the collection of inhibitors provide a foundation for rational modifications and further development of the compounds.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.5c00164\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.5c00164","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Discovery of Inhibitors for Bacterial Arr Enzymes ADP-Ribosylating and Inactivating Rifamycin Antibiotics.
ADP-ribosylation is an enzymatic process where an ADP-ribose moiety is transferred from NAD+ to an acceptor molecule. While ADP-ribosylation is well-established as a post-translational modification of proteins, rifamycin antibiotics are its only known small-molecule targets. ADP-ribosylation of rifampicin was first identified in Mycolicibacterium smegmatis, whose Arr enzyme transfers the ADP-ribose moiety to the 23-hydroxy group of rifampicin preventing its interaction with the bacterial RNA polymerase thereby inactivating the antibiotic. Arr homologues are widely spread among bacterial species and present in several pathogenic species often associated with mobile genetic elements. Inhibition of Arr enzymes offers a promising strategy to overcome ADP-ribosylation mediated rifamycin resistance. We developed a high-throughput activity assay which was applied to screen an in-house library of human ADP-ribosyltransferase-targeted compounds. We identified 15 inhibitors with IC50 values below 5 μM against four Arr enzymes from M. smegmatis, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Mycobacteroides abscessus. The observed overall selectivity of the hit compounds over the other homologues indicated structural differences between the proteins. We crystallized M. smegmatis and P. aeruginosa Arr enzymes, the former in complex with its most potent hit compound with an IC50 value of 1.3 μM. We observed structural differences in the NAD+ binding pockets of the two Arr homologues explaining the selectivity. Although the Arr inhibitors did not sensitize M. smegmatis to rifampicin in a growth inhibition assay, the structural information and the collection of inhibitors provide a foundation for rational modifications and further development of the compounds.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.