细菌Arr酶adp -核糖基化和利福霉素抗生素灭活抑制剂的发现。

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Juho Alaviuhkola, Sondos Abdulmajeed, Sven T Sowa, Johan Pääkkönen, Lari Lehtiö
{"title":"细菌Arr酶adp -核糖基化和利福霉素抗生素灭活抑制剂的发现。","authors":"Juho Alaviuhkola, Sondos Abdulmajeed, Sven T Sowa, Johan Pääkkönen, Lari Lehtiö","doi":"10.1021/acschembio.5c00164","DOIUrl":null,"url":null,"abstract":"<p><p>ADP-ribosylation is an enzymatic process where an ADP-ribose moiety is transferred from NAD<sup>+</sup> to an acceptor molecule. While ADP-ribosylation is well-established as a post-translational modification of proteins, rifamycin antibiotics are its only known small-molecule targets. ADP-ribosylation of rifampicin was first identified in <i>Mycolicibacterium smegmatis</i>, whose Arr enzyme transfers the ADP-ribose moiety to the 23-hydroxy group of rifampicin preventing its interaction with the bacterial RNA polymerase thereby inactivating the antibiotic. Arr homologues are widely spread among bacterial species and present in several pathogenic species often associated with mobile genetic elements. Inhibition of Arr enzymes offers a promising strategy to overcome ADP-ribosylation mediated rifamycin resistance. We developed a high-throughput activity assay which was applied to screen an in-house library of human ADP-ribosyltransferase-targeted compounds. We identified 15 inhibitors with IC<sub>50</sub> values below 5 μM against four Arr enzymes from <i>M. smegmatis</i>, <i>Pseudomonas aeruginosa</i>, <i>Stenotrophomonas maltophilia</i>, and <i>Mycobacteroides abscessus</i>. The observed overall selectivity of the hit compounds over the other homologues indicated structural differences between the proteins. We crystallized <i>M. smegmatis</i> and <i>P. aeruginosa</i> Arr enzymes, the former in complex with its most potent hit compound with an IC<sub>50</sub> value of 1.3 μM. We observed structural differences in the NAD<sup>+</sup> binding pockets of the two Arr homologues explaining the selectivity. Although the Arr inhibitors did not sensitize <i>M. smegmatis</i> to rifampicin in a growth inhibition assay, the structural information and the collection of inhibitors provide a foundation for rational modifications and further development of the compounds.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of Inhibitors for Bacterial Arr Enzymes ADP-Ribosylating and Inactivating Rifamycin Antibiotics.\",\"authors\":\"Juho Alaviuhkola, Sondos Abdulmajeed, Sven T Sowa, Johan Pääkkönen, Lari Lehtiö\",\"doi\":\"10.1021/acschembio.5c00164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ADP-ribosylation is an enzymatic process where an ADP-ribose moiety is transferred from NAD<sup>+</sup> to an acceptor molecule. While ADP-ribosylation is well-established as a post-translational modification of proteins, rifamycin antibiotics are its only known small-molecule targets. ADP-ribosylation of rifampicin was first identified in <i>Mycolicibacterium smegmatis</i>, whose Arr enzyme transfers the ADP-ribose moiety to the 23-hydroxy group of rifampicin preventing its interaction with the bacterial RNA polymerase thereby inactivating the antibiotic. Arr homologues are widely spread among bacterial species and present in several pathogenic species often associated with mobile genetic elements. Inhibition of Arr enzymes offers a promising strategy to overcome ADP-ribosylation mediated rifamycin resistance. We developed a high-throughput activity assay which was applied to screen an in-house library of human ADP-ribosyltransferase-targeted compounds. We identified 15 inhibitors with IC<sub>50</sub> values below 5 μM against four Arr enzymes from <i>M. smegmatis</i>, <i>Pseudomonas aeruginosa</i>, <i>Stenotrophomonas maltophilia</i>, and <i>Mycobacteroides abscessus</i>. The observed overall selectivity of the hit compounds over the other homologues indicated structural differences between the proteins. We crystallized <i>M. smegmatis</i> and <i>P. aeruginosa</i> Arr enzymes, the former in complex with its most potent hit compound with an IC<sub>50</sub> value of 1.3 μM. We observed structural differences in the NAD<sup>+</sup> binding pockets of the two Arr homologues explaining the selectivity. Although the Arr inhibitors did not sensitize <i>M. smegmatis</i> to rifampicin in a growth inhibition assay, the structural information and the collection of inhibitors provide a foundation for rational modifications and further development of the compounds.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.5c00164\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.5c00164","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

adp核糖基化是一种酶促过程,其中adp核糖片段从NAD+转移到受体分子。虽然adp核糖基化已被公认为蛋白质的翻译后修饰,但利福霉素抗生素是其唯一已知的小分子靶标。利福平的adp -核糖基化首先在黏毛分枝杆菌中被发现,其Arr酶将adp -核糖部分转移到利福平的23-羟基上,防止其与细菌RNA聚合酶相互作用,从而使抗生素失活。Arr同源物在细菌种类中广泛分布,并存在于几种致病物种中,通常与移动遗传元件相关。抑制Arr酶为克服adp -核糖基化介导的利福霉素耐药提供了一种有希望的策略。我们开发了一种高通量活性测定方法,用于筛选人类adp -核糖基转移酶靶向化合物的内部文库。我们发现了15种IC50值低于5 μM的抑制剂,分别对耻垢分枝杆菌、铜绿假单胞菌、嗜麦芽窄养单胞菌和脓肿分枝杆菌中的4种Arr酶具有抑制作用。所观察到的命中化合物对其他同源物的总体选择性表明了蛋白质之间的结构差异。我们结晶了M. smegmatis和P. aeruginosa Arr酶,前者与其最有效的命中化合物复合物,IC50值为1.3 μM。我们观察到两个Arr同源物的NAD+结合袋的结构差异解释了选择性。虽然Arr抑制剂在生长抑制实验中没有使耻垢分枝杆菌对利福平敏感,但其结构信息和抑制剂的收集为化合物的合理修饰和进一步开发提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovery of Inhibitors for Bacterial Arr Enzymes ADP-Ribosylating and Inactivating Rifamycin Antibiotics.

ADP-ribosylation is an enzymatic process where an ADP-ribose moiety is transferred from NAD+ to an acceptor molecule. While ADP-ribosylation is well-established as a post-translational modification of proteins, rifamycin antibiotics are its only known small-molecule targets. ADP-ribosylation of rifampicin was first identified in Mycolicibacterium smegmatis, whose Arr enzyme transfers the ADP-ribose moiety to the 23-hydroxy group of rifampicin preventing its interaction with the bacterial RNA polymerase thereby inactivating the antibiotic. Arr homologues are widely spread among bacterial species and present in several pathogenic species often associated with mobile genetic elements. Inhibition of Arr enzymes offers a promising strategy to overcome ADP-ribosylation mediated rifamycin resistance. We developed a high-throughput activity assay which was applied to screen an in-house library of human ADP-ribosyltransferase-targeted compounds. We identified 15 inhibitors with IC50 values below 5 μM against four Arr enzymes from M. smegmatis, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Mycobacteroides abscessus. The observed overall selectivity of the hit compounds over the other homologues indicated structural differences between the proteins. We crystallized M. smegmatis and P. aeruginosa Arr enzymes, the former in complex with its most potent hit compound with an IC50 value of 1.3 μM. We observed structural differences in the NAD+ binding pockets of the two Arr homologues explaining the selectivity. Although the Arr inhibitors did not sensitize M. smegmatis to rifampicin in a growth inhibition assay, the structural information and the collection of inhibitors provide a foundation for rational modifications and further development of the compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信