Romain Contentin, Cassie Jehl, Kevin Commenchail, Florence Legendre, Philippe Galéra, Frédéric Cassé, Magali Demoor
{"title":"马骨髓间充质基质细胞衍生软骨样体外模型的机械刺激触发骨关节炎特征。","authors":"Romain Contentin, Cassie Jehl, Kevin Commenchail, Florence Legendre, Philippe Galéra, Frédéric Cassé, Magali Demoor","doi":"10.1021/acsbiomaterials.5c00500","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) affects millions of people globally, causing irreversible cartilage damage, chronic inflammation, and progressive joint dysfunction. Similarly, horses can develop OA spontaneously or due to their athletic careers, influenced by mechanical and biochemical factors. Current treatments primarily focus on symptom relief without promoting cartilage regeneration. In line with the 3Rs principles (refine, reduce, replace), the development of <i>in vitro</i> OA models is essential for advancing new therapeutic approaches against OA. In response to this need, the present study aimed to develop an <i>in vitro</i> model of mechanically induced OA. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) were cultured in a biomaterial scaffold and differentiated for 21 days using a chondrogenic medium to produce cartilage-like <i>in vitro</i> models. The cartilage-like <i>in vitro</i> models underwent mechanical stimulation (compression) for 3 and 7 days at pressures sufficient to induce injurious stress. BM-MSC-derived chondrocytes express the transient receptor potential vanilloid-type 4 (TRPV4) channel and are responsive to mechanical stimulation. Mechanical stimulation was found to reduce cell proliferation without inducing cell death. The overall protein levels of type II collagen drastically declined after both 3 and 7 days of mechanical stimulation. Additionally, glycosaminoglycan (GAG) content within the cartilage-like <i>in vitro</i> models decreased, whereas GAG release into the supernatant increased following mechanical stimulation. Ultimately, compression led to the upregulation of catabolic factors and inflammatory mediators. In conclusion, this model successfully replicates several key features of OA, making it a valuable tool for investigating the disease's mechanisms and testing new therapeutic strategies.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Stimulation of Equine Bone Marrow Mesenchymal Stromal Cell-Derived Cartilage-Like In Vitro Model Triggers Osteoarthritis Features.\",\"authors\":\"Romain Contentin, Cassie Jehl, Kevin Commenchail, Florence Legendre, Philippe Galéra, Frédéric Cassé, Magali Demoor\",\"doi\":\"10.1021/acsbiomaterials.5c00500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis (OA) affects millions of people globally, causing irreversible cartilage damage, chronic inflammation, and progressive joint dysfunction. Similarly, horses can develop OA spontaneously or due to their athletic careers, influenced by mechanical and biochemical factors. Current treatments primarily focus on symptom relief without promoting cartilage regeneration. In line with the 3Rs principles (refine, reduce, replace), the development of <i>in vitro</i> OA models is essential for advancing new therapeutic approaches against OA. In response to this need, the present study aimed to develop an <i>in vitro</i> model of mechanically induced OA. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) were cultured in a biomaterial scaffold and differentiated for 21 days using a chondrogenic medium to produce cartilage-like <i>in vitro</i> models. The cartilage-like <i>in vitro</i> models underwent mechanical stimulation (compression) for 3 and 7 days at pressures sufficient to induce injurious stress. BM-MSC-derived chondrocytes express the transient receptor potential vanilloid-type 4 (TRPV4) channel and are responsive to mechanical stimulation. Mechanical stimulation was found to reduce cell proliferation without inducing cell death. The overall protein levels of type II collagen drastically declined after both 3 and 7 days of mechanical stimulation. Additionally, glycosaminoglycan (GAG) content within the cartilage-like <i>in vitro</i> models decreased, whereas GAG release into the supernatant increased following mechanical stimulation. Ultimately, compression led to the upregulation of catabolic factors and inflammatory mediators. In conclusion, this model successfully replicates several key features of OA, making it a valuable tool for investigating the disease's mechanisms and testing new therapeutic strategies.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.5c00500\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00500","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Mechanical Stimulation of Equine Bone Marrow Mesenchymal Stromal Cell-Derived Cartilage-Like In Vitro Model Triggers Osteoarthritis Features.
Osteoarthritis (OA) affects millions of people globally, causing irreversible cartilage damage, chronic inflammation, and progressive joint dysfunction. Similarly, horses can develop OA spontaneously or due to their athletic careers, influenced by mechanical and biochemical factors. Current treatments primarily focus on symptom relief without promoting cartilage regeneration. In line with the 3Rs principles (refine, reduce, replace), the development of in vitro OA models is essential for advancing new therapeutic approaches against OA. In response to this need, the present study aimed to develop an in vitro model of mechanically induced OA. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) were cultured in a biomaterial scaffold and differentiated for 21 days using a chondrogenic medium to produce cartilage-like in vitro models. The cartilage-like in vitro models underwent mechanical stimulation (compression) for 3 and 7 days at pressures sufficient to induce injurious stress. BM-MSC-derived chondrocytes express the transient receptor potential vanilloid-type 4 (TRPV4) channel and are responsive to mechanical stimulation. Mechanical stimulation was found to reduce cell proliferation without inducing cell death. The overall protein levels of type II collagen drastically declined after both 3 and 7 days of mechanical stimulation. Additionally, glycosaminoglycan (GAG) content within the cartilage-like in vitro models decreased, whereas GAG release into the supernatant increased following mechanical stimulation. Ultimately, compression led to the upregulation of catabolic factors and inflammatory mediators. In conclusion, this model successfully replicates several key features of OA, making it a valuable tool for investigating the disease's mechanisms and testing new therapeutic strategies.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture