一些完全交点的Chow环上超平面类积的注解

IF 0.8 3区 数学 Q2 MATHEMATICS
René Mboro
{"title":"一些完全交点的Chow环上超平面类积的注解","authors":"René Mboro","doi":"10.1002/mana.202400041","DOIUrl":null,"url":null,"abstract":"<p>By classical calculation, for a smooth hypersurface <span></span><math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n <mo>⊂</mo>\n <msubsup>\n <mi>P</mi>\n <mi>C</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$Y\\subset \\mathbb {P}^{n+1}_{\\mathbb {C}}$</annotation>\n </semantics></math>, the product by the hyperplane class is zero on homologically trivial rational cycles, that is, <span></span><math>\n <semantics>\n <mrow>\n <mo>·</mo>\n <msub>\n <mi>H</mi>\n <mrow>\n <mo>|</mo>\n <mi>Y</mi>\n </mrow>\n </msub>\n <mo>:</mo>\n <msub>\n <mi>CH</mi>\n <mi>i</mi>\n </msub>\n <msub>\n <mrow>\n <mo>(</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mtext>hom</mtext>\n <mo>,</mo>\n <mi>Q</mi>\n </mrow>\n </msub>\n <mo>→</mo>\n <msub>\n <mi>CH</mi>\n <mrow>\n <mi>i</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <msub>\n <mrow>\n <mo>(</mo>\n <mi>Y</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mtext>hom</mtext>\n <mo>,</mo>\n <mi>Q</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$\\cdot H_{|Y}:{\\rm CH}_i(Y)_{\\text{hom},\\mathbb {Q}}\\rightarrow {\\rm CH}_{i-1}(Y)_{\\text{hom},\\mathbb {Q}}$</annotation>\n </semantics></math> is 0 for any <span></span><math>\n <semantics>\n <mi>i</mi>\n <annotation>$i$</annotation>\n </semantics></math>. This note extends that result to some complete intersections.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 6","pages":"2014-2036"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A remark on the product by the hyperplane class in the Chow ring of some complete intersections\",\"authors\":\"René Mboro\",\"doi\":\"10.1002/mana.202400041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By classical calculation, for a smooth hypersurface <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Y</mi>\\n <mo>⊂</mo>\\n <msubsup>\\n <mi>P</mi>\\n <mi>C</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$Y\\\\subset \\\\mathbb {P}^{n+1}_{\\\\mathbb {C}}$</annotation>\\n </semantics></math>, the product by the hyperplane class is zero on homologically trivial rational cycles, that is, <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>·</mo>\\n <msub>\\n <mi>H</mi>\\n <mrow>\\n <mo>|</mo>\\n <mi>Y</mi>\\n </mrow>\\n </msub>\\n <mo>:</mo>\\n <msub>\\n <mi>CH</mi>\\n <mi>i</mi>\\n </msub>\\n <msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>Y</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mtext>hom</mtext>\\n <mo>,</mo>\\n <mi>Q</mi>\\n </mrow>\\n </msub>\\n <mo>→</mo>\\n <msub>\\n <mi>CH</mi>\\n <mrow>\\n <mi>i</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>Y</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mtext>hom</mtext>\\n <mo>,</mo>\\n <mi>Q</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$\\\\cdot H_{|Y}:{\\\\rm CH}_i(Y)_{\\\\text{hom},\\\\mathbb {Q}}\\\\rightarrow {\\\\rm CH}_{i-1}(Y)_{\\\\text{hom},\\\\mathbb {Q}}$</annotation>\\n </semantics></math> is 0 for any <span></span><math>\\n <semantics>\\n <mi>i</mi>\\n <annotation>$i$</annotation>\\n </semantics></math>. This note extends that result to some complete intersections.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 6\",\"pages\":\"2014-2036\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400041\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400041","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过经典计算,对于光滑超曲面Y∧P C n+1 $Y\子集\mathbb {P}^{n+1}_{\mathbb {C}}$,该超平面类在同调平凡有理环上的积为零,即:·h b| y:何志强,Q→CH i−1 (Y) hm,Q $\cdot H_{|Y}:{\rm CH}_i(Y)_{\text{home},\mathbb {Q}}\rightarrow {\rm CH}_{i-1}(Y)_{\text{home},\mathbb {Q}}$对于任何i$ i$都是0。本文将该结果扩展到一些完整的交叉点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A remark on the product by the hyperplane class in the Chow ring of some complete intersections

By classical calculation, for a smooth hypersurface Y P C n + 1 $Y\subset \mathbb {P}^{n+1}_{\mathbb {C}}$ , the product by the hyperplane class is zero on homologically trivial rational cycles, that is, · H | Y : CH i ( Y ) hom , Q CH i 1 ( Y ) hom , Q $\cdot H_{|Y}:{\rm CH}_i(Y)_{\text{hom},\mathbb {Q}}\rightarrow {\rm CH}_{i-1}(Y)_{\text{hom},\mathbb {Q}}$ is 0 for any i $i$ . This note extends that result to some complete intersections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信