深根供给反应性,增强基岩渗透带的硅酸盐风化作用

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2025-06-13 DOI:10.1029/2025AV001692
Ivan D. Osorio-Leon, Daniella M. Rempe, Jon K. Golla, Julien Bouchez, Jennifer L. Druhan
{"title":"深根供给反应性,增强基岩渗透带的硅酸盐风化作用","authors":"Ivan D. Osorio-Leon,&nbsp;Daniella M. Rempe,&nbsp;Jon K. Golla,&nbsp;Julien Bouchez,&nbsp;Jennifer L. Druhan","doi":"10.1029/2025AV001692","DOIUrl":null,"url":null,"abstract":"<p>In upland environments, roots commonly extend deep below soil into partially saturated bedrock. This Bedrock Vadose Zone (BVZ) has been shown to store and circulate water, host organic carbon respiration and serve as a critical source of rock-derived nutrients. However, the extent to which deep roots influence chemical weathering rates remains poorly understood. Here, we report 4 years of depth-resolved major ion chemistry over a 16-m thick BVZ hosting a deep rhizosphere in a catchment subject to a Mediterranean climate. These data allow development and validation of a reactive transport model (RTM), revealing that the timescales of water storage and drainage in the BVZ are sufficient to facilitate substantial chemical weathering of the shale bedrock. However, observed solute concentrations are only reproduced by the RTM when we explicitly include measured rates of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mrow>\n <mn>2</mn>\n <mrow>\n <mo>(</mo>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2(g)}$</annotation>\n </semantics></math> production meters below soil driven by the deeply rooted forest. By combining direct observations and a process-based RTM we conclude that the carbon respiration promoted by deep roots significantly enhances chemical weathering rates in the BVZ, constituting 43% <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation> $\\pm $</annotation>\n </semantics></math> 3% of total solute flux from the base of the BVZ to the water table.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 3","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001692","citationCount":"0","resultStr":"{\"title\":\"Deep Roots Supply Reactivity and Enhance Silicate Weathering in the Bedrock Vadose Zone\",\"authors\":\"Ivan D. Osorio-Leon,&nbsp;Daniella M. Rempe,&nbsp;Jon K. Golla,&nbsp;Julien Bouchez,&nbsp;Jennifer L. Druhan\",\"doi\":\"10.1029/2025AV001692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In upland environments, roots commonly extend deep below soil into partially saturated bedrock. This Bedrock Vadose Zone (BVZ) has been shown to store and circulate water, host organic carbon respiration and serve as a critical source of rock-derived nutrients. However, the extent to which deep roots influence chemical weathering rates remains poorly understood. Here, we report 4 years of depth-resolved major ion chemistry over a 16-m thick BVZ hosting a deep rhizosphere in a catchment subject to a Mediterranean climate. These data allow development and validation of a reactive transport model (RTM), revealing that the timescales of water storage and drainage in the BVZ are sufficient to facilitate substantial chemical weathering of the shale bedrock. However, observed solute concentrations are only reproduced by the RTM when we explicitly include measured rates of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mrow>\\n <mn>2</mn>\\n <mrow>\\n <mo>(</mo>\\n <mi>g</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2(g)}$</annotation>\\n </semantics></math> production meters below soil driven by the deeply rooted forest. By combining direct observations and a process-based RTM we conclude that the carbon respiration promoted by deep roots significantly enhances chemical weathering rates in the BVZ, constituting 43% <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>±</mo>\\n </mrow>\\n <annotation> $\\\\pm $</annotation>\\n </semantics></math> 3% of total solute flux from the base of the BVZ to the water table.</p>\",\"PeriodicalId\":100067,\"journal\":{\"name\":\"AGU Advances\",\"volume\":\"6 3\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001692\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGU Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025AV001692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025AV001692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在高地环境中,根系通常会深入土壤,进入部分饱和的基岩。基岩水气带(Bedrock Vadose Zone, BVZ)储存和循环水分,承载有机碳呼吸,并作为岩石营养物质的重要来源。然而,深根影响化学风化速率的程度仍然知之甚少。在这里,我们报告了4年的深度分辨主要离子化学在一个16米厚的BVZ承载深根际在一个受地中海气候影响的集水区。这些数据有助于开发和验证反应输运模型(RTM),揭示了BVZ储水和排水的时间尺度足以促进页岩基岩的实质性化学风化。然而,当我们明确地包括co2 (g)的测量速率${\text{CO}}_{2(g)}$时,RTM才会重现观测到的溶质浓度生产以米以下土壤为动力,深耕森林。通过直接观测和基于过程的RTM相结合,我们得出结论,深层根系促进的碳呼吸显著提高了BVZ的化学风化速率,占BVZ底部到地下水位总溶质通量的43%±$ $ pm $ 3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Roots Supply Reactivity and Enhance Silicate Weathering in the Bedrock Vadose Zone

In upland environments, roots commonly extend deep below soil into partially saturated bedrock. This Bedrock Vadose Zone (BVZ) has been shown to store and circulate water, host organic carbon respiration and serve as a critical source of rock-derived nutrients. However, the extent to which deep roots influence chemical weathering rates remains poorly understood. Here, we report 4 years of depth-resolved major ion chemistry over a 16-m thick BVZ hosting a deep rhizosphere in a catchment subject to a Mediterranean climate. These data allow development and validation of a reactive transport model (RTM), revealing that the timescales of water storage and drainage in the BVZ are sufficient to facilitate substantial chemical weathering of the shale bedrock. However, observed solute concentrations are only reproduced by the RTM when we explicitly include measured rates of CO 2 ( g ) ${\text{CO}}_{2(g)}$ production meters below soil driven by the deeply rooted forest. By combining direct observations and a process-based RTM we conclude that the carbon respiration promoted by deep roots significantly enhances chemical weathering rates in the BVZ, constituting 43%  ± $\pm $  3% of total solute flux from the base of the BVZ to the water table.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信