Ag@SnO2/g-C3N4三元纳米复合材料作为高效丙酮蒸气传感器

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Yoshita Katiyar, Shivani Sangwan, Gagan Sharma, Mohit Kumar, Anshika Goyal, Manish Jain, Deshraj Meena
{"title":"Ag@SnO2/g-C3N4三元纳米复合材料作为高效丙酮蒸气传感器","authors":"Yoshita Katiyar,&nbsp;Shivani Sangwan,&nbsp;Gagan Sharma,&nbsp;Mohit Kumar,&nbsp;Anshika Goyal,&nbsp;Manish Jain,&nbsp;Deshraj Meena","doi":"10.1002/slct.202404081","DOIUrl":null,"url":null,"abstract":"<p>Ternary nanocomposite of Ag modified SnO<sub>2</sub> (Ag@SnO<sub>2</sub>) nanoparticles and graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) nanosheets (Ag@SnO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>) have been successfully synthesized using a facile hydrothermal method. The synthesized nanostructures were subjected to various characterization techniques to investigate their structural, morphological, optical, and chemical properties. The XRD results confirm the crystalline nature and rutile phase of the synthesized SnO<sub>2</sub>-based nanostructures, while SEM and TEM revealed morphological characteristics of Ag@SnO<sub>2</sub> and high dispersion of Ag@SnO<sub>2</sub> nanoparticles on the surface of g-C<sub>3</sub>N<sub>4</sub> nanosheets. The gas sensing performance of the samples (Ag@SnO<sub>2</sub> and Ag@SnO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>) was evaluated towards 1 µL of acetone vapors in 2L sensing chamber at various operating temperatures. Ag@SnO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> based resistive gas sensor exhibited admirable sensitivity at (28%), which is ∼ 4 times higher than that of Ag@SnO<sub>2</sub> based sensor, and good repeatability towards acetone vapors at an operating temperature of 100 °C. The enhanced sensing results of Ag@SnO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>-based sensors at relatively low working temperatures are attributed to its high surface area (104.6 m<sup>2</sup>/g), reduced energy band gap from 2.8 eV to 2.4 eV, and strong interaction between Ag@SnO<sub>2</sub> nanoparticles and 2D g-C<sub>3</sub>N<sub>4</sub> nanosheets. Furthermore, a suitable sensing mechanism has been presented to explain the enhanced gas sensing properties of Ag@SnO<sub>2</sub> and Ag@SnO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> based resistive gas sensor.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 23","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ag@SnO2/g-C3N4 Ternary Nanocomposite as an Efficient Acetone Vapors Sensor\",\"authors\":\"Yoshita Katiyar,&nbsp;Shivani Sangwan,&nbsp;Gagan Sharma,&nbsp;Mohit Kumar,&nbsp;Anshika Goyal,&nbsp;Manish Jain,&nbsp;Deshraj Meena\",\"doi\":\"10.1002/slct.202404081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ternary nanocomposite of Ag modified SnO<sub>2</sub> (Ag@SnO<sub>2</sub>) nanoparticles and graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) nanosheets (Ag@SnO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>) have been successfully synthesized using a facile hydrothermal method. The synthesized nanostructures were subjected to various characterization techniques to investigate their structural, morphological, optical, and chemical properties. The XRD results confirm the crystalline nature and rutile phase of the synthesized SnO<sub>2</sub>-based nanostructures, while SEM and TEM revealed morphological characteristics of Ag@SnO<sub>2</sub> and high dispersion of Ag@SnO<sub>2</sub> nanoparticles on the surface of g-C<sub>3</sub>N<sub>4</sub> nanosheets. The gas sensing performance of the samples (Ag@SnO<sub>2</sub> and Ag@SnO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>) was evaluated towards 1 µL of acetone vapors in 2L sensing chamber at various operating temperatures. Ag@SnO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> based resistive gas sensor exhibited admirable sensitivity at (28%), which is ∼ 4 times higher than that of Ag@SnO<sub>2</sub> based sensor, and good repeatability towards acetone vapors at an operating temperature of 100 °C. The enhanced sensing results of Ag@SnO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>-based sensors at relatively low working temperatures are attributed to its high surface area (104.6 m<sup>2</sup>/g), reduced energy band gap from 2.8 eV to 2.4 eV, and strong interaction between Ag@SnO<sub>2</sub> nanoparticles and 2D g-C<sub>3</sub>N<sub>4</sub> nanosheets. Furthermore, a suitable sensing mechanism has been presented to explain the enhanced gas sensing properties of Ag@SnO<sub>2</sub> and Ag@SnO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> based resistive gas sensor.</p>\",\"PeriodicalId\":146,\"journal\":{\"name\":\"ChemistrySelect\",\"volume\":\"10 23\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistrySelect\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.202404081\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.202404081","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用水热法成功合成了Ag修饰的SnO2 (Ag@SnO2)纳米粒子和石墨化碳(g-C3N4)纳米片(Ag@SnO2/g-C3N4)三元复合材料。对合成的纳米结构进行了各种表征技术,以研究其结构、形态、光学和化学性质。XRD结果证实了合成的sno2基纳米结构的结晶性质和金红石相,SEM和TEM显示了Ag@SnO2纳米颗粒的形态特征和Ag@SnO2纳米颗粒在g-C3N4纳米片表面的高度分散。在不同工作温度下,对样品(Ag@SnO2和Ag@SnO2/g-C3N4)在2L传感室中对1µL丙酮蒸汽的气敏性能进行了评估。基于Ag@SnO2/g-C3N4的电阻式气体传感器的灵敏度为28%,比基于Ag@SnO2的传感器高约4倍,并且在100℃的工作温度下对丙酮蒸汽具有良好的重复性。基于Ag@SnO2/g- c3n4的传感器在相对较低工作温度下的传感效果增强,主要归功于其高表面积(104.6 m2/g),将能带隙从2.8 eV减小到2.4 eV,以及Ag@SnO2纳米颗粒与2D g- c3n4纳米片之间的强相互作用。此外,还提出了一种合适的传感机制来解释Ag@SnO2和Ag@SnO2/g-C3N4基电阻式气体传感器增强的气敏性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ag@SnO2/g-C3N4 Ternary Nanocomposite as an Efficient Acetone Vapors Sensor

Ag@SnO2/g-C3N4 Ternary Nanocomposite as an Efficient Acetone Vapors Sensor

Ag@SnO2/g-C3N4 Ternary Nanocomposite as an Efficient Acetone Vapors Sensor

Ag@SnO2/g-C3N4 Ternary Nanocomposite as an Efficient Acetone Vapors Sensor

Ternary nanocomposite of Ag modified SnO2 (Ag@SnO2) nanoparticles and graphitic carbon nitride (g-C3N4) nanosheets (Ag@SnO2/g-C3N4) have been successfully synthesized using a facile hydrothermal method. The synthesized nanostructures were subjected to various characterization techniques to investigate their structural, morphological, optical, and chemical properties. The XRD results confirm the crystalline nature and rutile phase of the synthesized SnO2-based nanostructures, while SEM and TEM revealed morphological characteristics of Ag@SnO2 and high dispersion of Ag@SnO2 nanoparticles on the surface of g-C3N4 nanosheets. The gas sensing performance of the samples (Ag@SnO2 and Ag@SnO2/g-C3N4) was evaluated towards 1 µL of acetone vapors in 2L sensing chamber at various operating temperatures. Ag@SnO2/g-C3N4 based resistive gas sensor exhibited admirable sensitivity at (28%), which is ∼ 4 times higher than that of Ag@SnO2 based sensor, and good repeatability towards acetone vapors at an operating temperature of 100 °C. The enhanced sensing results of Ag@SnO2/g-C3N4-based sensors at relatively low working temperatures are attributed to its high surface area (104.6 m2/g), reduced energy band gap from 2.8 eV to 2.4 eV, and strong interaction between Ag@SnO2 nanoparticles and 2D g-C3N4 nanosheets. Furthermore, a suitable sensing mechanism has been presented to explain the enhanced gas sensing properties of Ag@SnO2 and Ag@SnO2/g-C3N4 based resistive gas sensor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信