机器学习容忍多普勒位雷达探测器

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kyle P. Wensell, Changshi Zhou, Alexander M. Haimovich, Abdallah Khreishah, Brent Lozneanu, Brandon Cannizzo, Evan A. Young, Lam T. Vo
{"title":"机器学习容忍多普勒位雷达探测器","authors":"Kyle P. Wensell,&nbsp;Changshi Zhou,&nbsp;Alexander M. Haimovich,&nbsp;Abdallah Khreishah,&nbsp;Brent Lozneanu,&nbsp;Brandon Cannizzo,&nbsp;Evan A. Young,&nbsp;Lam T. Vo","doi":"10.1049/rsn2.70011","DOIUrl":null,"url":null,"abstract":"<p>Doppler-tolerant waveforms are some of the most common radar waveforms used in practice. However, their deterministic and repetitive nature impedes control of mutual interference when multiple radars operate in close proximity. Noise radar technology may address this problem but is not Doppler tolerant. In this study, we design a machine learning radar detector capable of Doppler-tolerant performance with noise waveforms. The detector is implemented as a feedforward multilayer neural network. We show that the detector may be trained to operate with one-bit data. Further, to evaluate the proposed detector's performance, we derive a closed-form expression of the receiver operating characteristic (ROC) for one-bit detection of a Swerling 1 target using the square-law detector under the assumption of low signal-to-noise ratio (SNR). Numerical results demonstrate that the proposed machine learning detector, when suitably trained, is capable of operating with Doppler tolerance over a wide range of Doppler shifts.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70011","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Doppler-Tolerant One-Bit Radar Detectors\",\"authors\":\"Kyle P. Wensell,&nbsp;Changshi Zhou,&nbsp;Alexander M. Haimovich,&nbsp;Abdallah Khreishah,&nbsp;Brent Lozneanu,&nbsp;Brandon Cannizzo,&nbsp;Evan A. Young,&nbsp;Lam T. Vo\",\"doi\":\"10.1049/rsn2.70011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Doppler-tolerant waveforms are some of the most common radar waveforms used in practice. However, their deterministic and repetitive nature impedes control of mutual interference when multiple radars operate in close proximity. Noise radar technology may address this problem but is not Doppler tolerant. In this study, we design a machine learning radar detector capable of Doppler-tolerant performance with noise waveforms. The detector is implemented as a feedforward multilayer neural network. We show that the detector may be trained to operate with one-bit data. Further, to evaluate the proposed detector's performance, we derive a closed-form expression of the receiver operating characteristic (ROC) for one-bit detection of a Swerling 1 target using the square-law detector under the assumption of low signal-to-noise ratio (SNR). Numerical results demonstrate that the proposed machine learning detector, when suitably trained, is capable of operating with Doppler tolerance over a wide range of Doppler shifts.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70011\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70011\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70011","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

多普勒容忍波形是实际应用中最常用的雷达波形之一。然而,当多部雷达在近距离工作时,它们的确定性和重复性阻碍了相互干扰的控制。噪声雷达技术可以解决这个问题,但不能容忍多普勒。在本研究中,我们设计了一种能够容忍多普勒噪声波形的机器学习雷达探测器。该检测器采用前馈多层神经网络实现。我们证明检测器可以训练为使用一位数据操作。此外,为了评估所提出的检测器的性能,在低信噪比(SNR)的假设下,我们推导了使用平方律检测器进行1位旋转目标检测的接收器工作特性(ROC)的封闭表达式。数值结果表明,所提出的机器学习检测器,经过适当的训练,能够在广泛的多普勒频移范围内以多普勒容差运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning Doppler-Tolerant One-Bit Radar Detectors

Machine Learning Doppler-Tolerant One-Bit Radar Detectors

Doppler-tolerant waveforms are some of the most common radar waveforms used in practice. However, their deterministic and repetitive nature impedes control of mutual interference when multiple radars operate in close proximity. Noise radar technology may address this problem but is not Doppler tolerant. In this study, we design a machine learning radar detector capable of Doppler-tolerant performance with noise waveforms. The detector is implemented as a feedforward multilayer neural network. We show that the detector may be trained to operate with one-bit data. Further, to evaluate the proposed detector's performance, we derive a closed-form expression of the receiver operating characteristic (ROC) for one-bit detection of a Swerling 1 target using the square-law detector under the assumption of low signal-to-noise ratio (SNR). Numerical results demonstrate that the proposed machine learning detector, when suitably trained, is capable of operating with Doppler tolerance over a wide range of Doppler shifts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信