基于机器学习的穆勒矩阵偏振法在指尖上的无创葡萄糖传感

IF 2.4 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chih-Yi Liu;Yu-Lung Lo;Wei-Chun Hung
{"title":"基于机器学习的穆勒矩阵偏振法在指尖上的无创葡萄糖传感","authors":"Chih-Yi Liu;Yu-Lung Lo;Wei-Chun Hung","doi":"10.1109/JPHOT.2025.3575264","DOIUrl":null,"url":null,"abstract":"This study achieved significant predictive results using Mueller Matrix Polarimetry combined with the XGBoost algorithm for non-invasive glucose sensing of biological tissues on human fingertips. The experiment used a 660nm laser in polarimetry and incident angle optimization to enhance measurement capabilities, comprehensively obtaining properties including Linear Birefringence (LB), Circular Birefringence (CB), linear dichroism (LD), Circular Dichroism (CD), and Degree of Polarization (DoP). Phantom models simulated the interference properties of biological tissue polarization measurements. The XGBoost regression model, with feature engineering based on correlation matrices, showed consistent trends in both phantom and human measurements. As a result, the prediction results for glucose concentration in phantom mixtures were R² = 0.96 and Mean Absolute Relative Difference (MARD) = 8.67%. Furthermore, the prediction of glucose concentration on human fingertips achieved R² of 0.89, and MARD of 2.92% using the features: <inline-formula><tex-math>${{R}_1}$</tex-math></inline-formula>, <inline-formula><tex-math>${{m}_{32}}$</tex-math></inline-formula>, <inline-formula><tex-math>$S{{1}^{{{{45}}^\\circ }}}$</tex-math></inline-formula>, <inline-formula><tex-math>$S{{2}^{{{{45}}^\\circ }}}$</tex-math></inline-formula>, <inline-formula><tex-math>$S{{1}^R}$</tex-math></inline-formula>, <inline-formula><tex-math>$DoL{{P}^R}$</tex-math></inline-formula>, and <inline-formula><tex-math>${{S}_{tol}}$</tex-math></inline-formula>. It is found that for predicting human blood glucose using machine learning, CB, CD, DoP, and Total light intensity are crucial optical properties.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 3","pages":"1-12"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11018343","citationCount":"0","resultStr":"{\"title\":\"Non-Invasive Glucose Sensing on Fingertip Using a Mueller Matrix Polarimetry With Machine Learning\",\"authors\":\"Chih-Yi Liu;Yu-Lung Lo;Wei-Chun Hung\",\"doi\":\"10.1109/JPHOT.2025.3575264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study achieved significant predictive results using Mueller Matrix Polarimetry combined with the XGBoost algorithm for non-invasive glucose sensing of biological tissues on human fingertips. The experiment used a 660nm laser in polarimetry and incident angle optimization to enhance measurement capabilities, comprehensively obtaining properties including Linear Birefringence (LB), Circular Birefringence (CB), linear dichroism (LD), Circular Dichroism (CD), and Degree of Polarization (DoP). Phantom models simulated the interference properties of biological tissue polarization measurements. The XGBoost regression model, with feature engineering based on correlation matrices, showed consistent trends in both phantom and human measurements. As a result, the prediction results for glucose concentration in phantom mixtures were R² = 0.96 and Mean Absolute Relative Difference (MARD) = 8.67%. Furthermore, the prediction of glucose concentration on human fingertips achieved R² of 0.89, and MARD of 2.92% using the features: <inline-formula><tex-math>${{R}_1}$</tex-math></inline-formula>, <inline-formula><tex-math>${{m}_{32}}$</tex-math></inline-formula>, <inline-formula><tex-math>$S{{1}^{{{{45}}^\\\\circ }}}$</tex-math></inline-formula>, <inline-formula><tex-math>$S{{2}^{{{{45}}^\\\\circ }}}$</tex-math></inline-formula>, <inline-formula><tex-math>$S{{1}^R}$</tex-math></inline-formula>, <inline-formula><tex-math>$DoL{{P}^R}$</tex-math></inline-formula>, and <inline-formula><tex-math>${{S}_{tol}}$</tex-math></inline-formula>. It is found that for predicting human blood glucose using machine learning, CB, CD, DoP, and Total light intensity are crucial optical properties.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"17 3\",\"pages\":\"1-12\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11018343\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11018343/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11018343/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用Mueller Matrix偏振法结合XGBoost算法对人体指尖生物组织进行无创葡萄糖传感,取得了显著的预测结果。实验采用660nm激光进行偏振和入射角优化,提高测量能力,综合获得线性双折射(LB)、圆双折射(CB)、线性二色性(LD)、圆二色性(CD)和偏振度(DoP)等特性。幻影模型模拟了生物组织偏振测量的干涉特性。基于相关矩阵的特征工程的XGBoost回归模型显示了幻影和人体测量的一致趋势。结果表明,幻影混合物中葡萄糖浓度的预测结果为R²= 0.96,平均绝对相对差(MARD) = 8.67%。此外,葡萄糖浓度的预测人类指尖达到0.89 R²,和MARD 2.92%的使用特点:$ {{R} _1} $, $ {{m} _ {32}} $, $ S{{1} ^{{{{45}} ^ \保监会}}}$,$ S{{2} ^{{{{45}} ^ \保监会}}}$,$ S {{1} ^ R} $, $痛单位{{P} ^ R} $,和${{年代}_ {tol}} $。研究发现,对于使用机器学习预测人体血糖,CB、CD、DoP和总光强是至关重要的光学性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Invasive Glucose Sensing on Fingertip Using a Mueller Matrix Polarimetry With Machine Learning
This study achieved significant predictive results using Mueller Matrix Polarimetry combined with the XGBoost algorithm for non-invasive glucose sensing of biological tissues on human fingertips. The experiment used a 660nm laser in polarimetry and incident angle optimization to enhance measurement capabilities, comprehensively obtaining properties including Linear Birefringence (LB), Circular Birefringence (CB), linear dichroism (LD), Circular Dichroism (CD), and Degree of Polarization (DoP). Phantom models simulated the interference properties of biological tissue polarization measurements. The XGBoost regression model, with feature engineering based on correlation matrices, showed consistent trends in both phantom and human measurements. As a result, the prediction results for glucose concentration in phantom mixtures were R² = 0.96 and Mean Absolute Relative Difference (MARD) = 8.67%. Furthermore, the prediction of glucose concentration on human fingertips achieved R² of 0.89, and MARD of 2.92% using the features: ${{R}_1}$, ${{m}_{32}}$, $S{{1}^{{{{45}}^\circ }}}$, $S{{2}^{{{{45}}^\circ }}}$, $S{{1}^R}$, $DoL{{P}^R}$, and ${{S}_{tol}}$. It is found that for predicting human blood glucose using machine learning, CB, CD, DoP, and Total light intensity are crucial optical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信