流体动力学、等离子体物理和非线性光学中Kadomtsev-Petviashvili-Boiti-Leon-Manna-Pempinelli组合方程的非线性波动行为

IF 2.5 3区 物理与天体物理 Q2 ACOUSTICS
Majid Madadi , Mustafa Inc , Mustafa Bayram
{"title":"流体动力学、等离子体物理和非线性光学中Kadomtsev-Petviashvili-Boiti-Leon-Manna-Pempinelli组合方程的非线性波动行为","authors":"Majid Madadi ,&nbsp;Mustafa Inc ,&nbsp;Mustafa Bayram","doi":"10.1016/j.wavemoti.2025.103584","DOIUrl":null,"url":null,"abstract":"<div><div>Research in real-world applications has been driving the progress of nonlinear science, with fluid dynamics and plasma physics currently capturing significant attention. This paper explores a newly proposed (2+1)-dimensional nonlinear wave equation, combining the Kadomtsev–Petviashvili (KPE) and Boiti–Leon–Manna–Pempinelli equations (BLMPE). The equation, which includes nonlinear and dispersive terms, has potential applications in fluid dynamics, plasma physics, nonlinear optics, and geophysical flows. We analyze its integrability, showing that it does not satisfy the Painlevé property but admits multi-soliton solutions. Using the Hirota bilinear approach and extended homoclinic test approach, we derive analytic solutions such as lump waves, soliton interactions, and breather waves, with the latter leading to rogue wave formation.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103584"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear wave behaviors for a combined Kadomtsev–Petviashvili–Boiti–Leon–Manna–Pempinelli equation in fluid dynamics, plasma physics and nonlinear optics\",\"authors\":\"Majid Madadi ,&nbsp;Mustafa Inc ,&nbsp;Mustafa Bayram\",\"doi\":\"10.1016/j.wavemoti.2025.103584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Research in real-world applications has been driving the progress of nonlinear science, with fluid dynamics and plasma physics currently capturing significant attention. This paper explores a newly proposed (2+1)-dimensional nonlinear wave equation, combining the Kadomtsev–Petviashvili (KPE) and Boiti–Leon–Manna–Pempinelli equations (BLMPE). The equation, which includes nonlinear and dispersive terms, has potential applications in fluid dynamics, plasma physics, nonlinear optics, and geophysical flows. We analyze its integrability, showing that it does not satisfy the Painlevé property but admits multi-soliton solutions. Using the Hirota bilinear approach and extended homoclinic test approach, we derive analytic solutions such as lump waves, soliton interactions, and breather waves, with the latter leading to rogue wave formation.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"139 \",\"pages\":\"Article 103584\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212525000952\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525000952","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在现实世界中的应用研究已经推动了非线性科学的进步,流体动力学和等离子体物理学目前引起了极大的关注。结合Kadomtsev-Petviashvili (KPE)和boi - leon - manna - pempinelli (BLMPE)方程,提出了一种新的(2+1)维非线性波动方程。该方程包含非线性和色散项,在流体动力学、等离子体物理、非线性光学和地球物理流中具有潜在的应用。我们分析了它的可积性,表明它不满足painlevel性质,但允许多孤子解。利用Hirota双线性方法和扩展同斜检验方法,我们导出了块波、孤子相互作用和呼吸波等解析解,后者导致异常波的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear wave behaviors for a combined Kadomtsev–Petviashvili–Boiti–Leon–Manna–Pempinelli equation in fluid dynamics, plasma physics and nonlinear optics
Research in real-world applications has been driving the progress of nonlinear science, with fluid dynamics and plasma physics currently capturing significant attention. This paper explores a newly proposed (2+1)-dimensional nonlinear wave equation, combining the Kadomtsev–Petviashvili (KPE) and Boiti–Leon–Manna–Pempinelli equations (BLMPE). The equation, which includes nonlinear and dispersive terms, has potential applications in fluid dynamics, plasma physics, nonlinear optics, and geophysical flows. We analyze its integrability, showing that it does not satisfy the Painlevé property but admits multi-soliton solutions. Using the Hirota bilinear approach and extended homoclinic test approach, we derive analytic solutions such as lump waves, soliton interactions, and breather waves, with the latter leading to rogue wave formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信