{"title":"流体动力学、等离子体物理和非线性光学中Kadomtsev-Petviashvili-Boiti-Leon-Manna-Pempinelli组合方程的非线性波动行为","authors":"Majid Madadi , Mustafa Inc , Mustafa Bayram","doi":"10.1016/j.wavemoti.2025.103584","DOIUrl":null,"url":null,"abstract":"<div><div>Research in real-world applications has been driving the progress of nonlinear science, with fluid dynamics and plasma physics currently capturing significant attention. This paper explores a newly proposed (2+1)-dimensional nonlinear wave equation, combining the Kadomtsev–Petviashvili (KPE) and Boiti–Leon–Manna–Pempinelli equations (BLMPE). The equation, which includes nonlinear and dispersive terms, has potential applications in fluid dynamics, plasma physics, nonlinear optics, and geophysical flows. We analyze its integrability, showing that it does not satisfy the Painlevé property but admits multi-soliton solutions. Using the Hirota bilinear approach and extended homoclinic test approach, we derive analytic solutions such as lump waves, soliton interactions, and breather waves, with the latter leading to rogue wave formation.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103584"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear wave behaviors for a combined Kadomtsev–Petviashvili–Boiti–Leon–Manna–Pempinelli equation in fluid dynamics, plasma physics and nonlinear optics\",\"authors\":\"Majid Madadi , Mustafa Inc , Mustafa Bayram\",\"doi\":\"10.1016/j.wavemoti.2025.103584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Research in real-world applications has been driving the progress of nonlinear science, with fluid dynamics and plasma physics currently capturing significant attention. This paper explores a newly proposed (2+1)-dimensional nonlinear wave equation, combining the Kadomtsev–Petviashvili (KPE) and Boiti–Leon–Manna–Pempinelli equations (BLMPE). The equation, which includes nonlinear and dispersive terms, has potential applications in fluid dynamics, plasma physics, nonlinear optics, and geophysical flows. We analyze its integrability, showing that it does not satisfy the Painlevé property but admits multi-soliton solutions. Using the Hirota bilinear approach and extended homoclinic test approach, we derive analytic solutions such as lump waves, soliton interactions, and breather waves, with the latter leading to rogue wave formation.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"139 \",\"pages\":\"Article 103584\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212525000952\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525000952","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
摘要
在现实世界中的应用研究已经推动了非线性科学的进步,流体动力学和等离子体物理学目前引起了极大的关注。结合Kadomtsev-Petviashvili (KPE)和boi - leon - manna - pempinelli (BLMPE)方程,提出了一种新的(2+1)维非线性波动方程。该方程包含非线性和色散项,在流体动力学、等离子体物理、非线性光学和地球物理流中具有潜在的应用。我们分析了它的可积性,表明它不满足painlevel性质,但允许多孤子解。利用Hirota双线性方法和扩展同斜检验方法,我们导出了块波、孤子相互作用和呼吸波等解析解,后者导致异常波的形成。
Nonlinear wave behaviors for a combined Kadomtsev–Petviashvili–Boiti–Leon–Manna–Pempinelli equation in fluid dynamics, plasma physics and nonlinear optics
Research in real-world applications has been driving the progress of nonlinear science, with fluid dynamics and plasma physics currently capturing significant attention. This paper explores a newly proposed (2+1)-dimensional nonlinear wave equation, combining the Kadomtsev–Petviashvili (KPE) and Boiti–Leon–Manna–Pempinelli equations (BLMPE). The equation, which includes nonlinear and dispersive terms, has potential applications in fluid dynamics, plasma physics, nonlinear optics, and geophysical flows. We analyze its integrability, showing that it does not satisfy the Painlevé property but admits multi-soliton solutions. Using the Hirota bilinear approach and extended homoclinic test approach, we derive analytic solutions such as lump waves, soliton interactions, and breather waves, with the latter leading to rogue wave formation.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.