硅片电阻率在硅异质结太阳能电池性能中的作用:对载流子动力学的一些见解

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Shrestha Bhattacharya, Ashutosh Pandey, Shahnawaz Alam, Silajit Manna, Sourav Sadhukhan, Son Pal Singh, Vamsi Krishna Komarala
{"title":"硅片电阻率在硅异质结太阳能电池性能中的作用:对载流子动力学的一些见解","authors":"Shrestha Bhattacharya,&nbsp;Ashutosh Pandey,&nbsp;Shahnawaz Alam,&nbsp;Silajit Manna,&nbsp;Sourav Sadhukhan,&nbsp;Son Pal Singh,&nbsp;Vamsi Krishna Komarala","doi":"10.1016/j.solener.2025.113702","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we show the n-type silicon wafer resistivity (doping concentration) variation effect on the power conversion efficiency (PCE) of silicon heterojunction (SHJ) solar cells aided by a detailed simulation study. Initially, to identify the recombination-induced loss mechanisms based on wafer resistivity, the effective minority carrier lifetimes (τ<sub>eff</sub>) were analyzed. It revealed that τ<sub>eff</sub> at the operating point of maximum power (MPP) is strongly influenced by the doping density in the wafer. The SRH recombination remains relatively invariant between the wafer resistivity range ∼ 0.8 to ∼ 4.5 Ω-cm with τ<sub>SRH</sub> ∼ 7 ms, whereas Auger recombination is significantly enhanced (τ<sub>Aug</sub> from ∼ 7 ms to ∼ 4 ms) in low resistivity wafers. Low wafer resistivity also has a positive impact on the built-in potential at the n-c-Si/p-a-Si:H interface, increasing MPP voltage (V<sub>mpp</sub>), from ∼ 600 mV to ∼ 639 mV and a pFF from ∼ 81 % to ∼ 85 %. It is also verified with built-in potential variation estimation based on wafer doping concentration using the Mott-Schottky plot generated from capacitance-voltage measurements. TCAD 3D device simulations also clarify a narrow space charge region with field effect at the n-c-Si/p-a-Si:H interface with higher doping influencing V<sub>mpp</sub> and pFF, which is verified by incorporating fixed bulk defect impurities in the wafer. Contact resistivity measurements also highlight reduced resistance contribution from wafer and electron-selective contacts from 0.114 Ω-cm<sup>2</sup> to 0.040 Ω-cm<sup>2</sup>, leading to overall PCE of an SHJ cell from ∼ 21.8 % to ∼ 23.4 % with a low-resistivity wafer.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"299 ","pages":"Article 113702"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of wafer resistivity in silicon heterojunction solar cells performance: Some insights on carrier dynamics\",\"authors\":\"Shrestha Bhattacharya,&nbsp;Ashutosh Pandey,&nbsp;Shahnawaz Alam,&nbsp;Silajit Manna,&nbsp;Sourav Sadhukhan,&nbsp;Son Pal Singh,&nbsp;Vamsi Krishna Komarala\",\"doi\":\"10.1016/j.solener.2025.113702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we show the n-type silicon wafer resistivity (doping concentration) variation effect on the power conversion efficiency (PCE) of silicon heterojunction (SHJ) solar cells aided by a detailed simulation study. Initially, to identify the recombination-induced loss mechanisms based on wafer resistivity, the effective minority carrier lifetimes (τ<sub>eff</sub>) were analyzed. It revealed that τ<sub>eff</sub> at the operating point of maximum power (MPP) is strongly influenced by the doping density in the wafer. The SRH recombination remains relatively invariant between the wafer resistivity range ∼ 0.8 to ∼ 4.5 Ω-cm with τ<sub>SRH</sub> ∼ 7 ms, whereas Auger recombination is significantly enhanced (τ<sub>Aug</sub> from ∼ 7 ms to ∼ 4 ms) in low resistivity wafers. Low wafer resistivity also has a positive impact on the built-in potential at the n-c-Si/p-a-Si:H interface, increasing MPP voltage (V<sub>mpp</sub>), from ∼ 600 mV to ∼ 639 mV and a pFF from ∼ 81 % to ∼ 85 %. It is also verified with built-in potential variation estimation based on wafer doping concentration using the Mott-Schottky plot generated from capacitance-voltage measurements. TCAD 3D device simulations also clarify a narrow space charge region with field effect at the n-c-Si/p-a-Si:H interface with higher doping influencing V<sub>mpp</sub> and pFF, which is verified by incorporating fixed bulk defect impurities in the wafer. Contact resistivity measurements also highlight reduced resistance contribution from wafer and electron-selective contacts from 0.114 Ω-cm<sup>2</sup> to 0.040 Ω-cm<sup>2</sup>, leading to overall PCE of an SHJ cell from ∼ 21.8 % to ∼ 23.4 % with a low-resistivity wafer.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"299 \",\"pages\":\"Article 113702\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25004657\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25004657","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们展示了n型硅片电阻率(掺杂浓度)变化对硅异质结(SHJ)太阳能电池功率转换效率(PCE)的影响。首先,为了确定基于晶圆电阻率的重组诱导损耗机制,分析了有效少数载流子寿命(τeff)。结果表明,最大功率工作点τeff受掺杂密度的影响较大。当τSRH ~ 7 ms时,在硅片电阻率范围为~ 0.8 ~ ~ 4.5 Ω-cm之间,SRH复合保持相对不变,而在低电阻率硅片中,奥歇复合显著增强(τAug从~ 7 ms到~ 4 ms)。低晶圆电阻率对n-c-Si/p-a-Si:H界面的内置电位也有积极影响,MPP电压(Vmpp)从~ 600 mV增加到~ 639 mV, pFF从~ 81%增加到~ 85%。利用电容-电压测量生成的莫特-肖特基图,对基于晶圆掺杂浓度的内置电位变化估计进行了验证。TCAD 3D器件模拟还阐明了在n-c-Si/p-a-Si:H界面处存在具有场效应的窄空间电荷区,高掺杂影响Vmpp和pFF,通过在晶圆中加入固定体缺陷杂质验证了这一点。接触电阻率测量还强调了晶圆和电子选择接触的电阻贡献从0.114 Ω-cm2降低到0.040 Ω-cm2,导致低电阻率晶圆的SHJ电池的总体PCE从~ 21.8%降低到~ 23.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of wafer resistivity in silicon heterojunction solar cells performance: Some insights on carrier dynamics
In this work, we show the n-type silicon wafer resistivity (doping concentration) variation effect on the power conversion efficiency (PCE) of silicon heterojunction (SHJ) solar cells aided by a detailed simulation study. Initially, to identify the recombination-induced loss mechanisms based on wafer resistivity, the effective minority carrier lifetimes (τeff) were analyzed. It revealed that τeff at the operating point of maximum power (MPP) is strongly influenced by the doping density in the wafer. The SRH recombination remains relatively invariant between the wafer resistivity range ∼ 0.8 to ∼ 4.5 Ω-cm with τSRH ∼ 7 ms, whereas Auger recombination is significantly enhanced (τAug from ∼ 7 ms to ∼ 4 ms) in low resistivity wafers. Low wafer resistivity also has a positive impact on the built-in potential at the n-c-Si/p-a-Si:H interface, increasing MPP voltage (Vmpp), from ∼ 600 mV to ∼ 639 mV and a pFF from ∼ 81 % to ∼ 85 %. It is also verified with built-in potential variation estimation based on wafer doping concentration using the Mott-Schottky plot generated from capacitance-voltage measurements. TCAD 3D device simulations also clarify a narrow space charge region with field effect at the n-c-Si/p-a-Si:H interface with higher doping influencing Vmpp and pFF, which is verified by incorporating fixed bulk defect impurities in the wafer. Contact resistivity measurements also highlight reduced resistance contribution from wafer and electron-selective contacts from 0.114 Ω-cm2 to 0.040 Ω-cm2, leading to overall PCE of an SHJ cell from ∼ 21.8 % to ∼ 23.4 % with a low-resistivity wafer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信