{"title":"调整基质:聚丙烯酰胺水凝胶揭示了机械生物学的最新进展","authors":"Giuseppe Ciccone , Manuel Salmeron-Sanchez","doi":"10.1016/j.cobme.2025.100604","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past 30 years, polyacrylamide (PAAm) hydrogels have become essential tools to mimic the mechanical properties, chemical composition, and dimensionality of the extracellular matrix (ECM) in in vitro mechanobiology studies. This brief review highlights recent developments that have transformed PAAm hydrogels from simple 2D static elastic hydrogels to complex ECM-mimicking systems involving protein micropatterning, mechanical patterning, stretching, DNA tension probes, viscoelasticity, and the microfabrication of 3D systems. We focus on novel mechanobiological questions that have been elucidated using these platforms and give a perspective on the future of PAAm hydrogels for mechanobiology research.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"35 ","pages":"Article 100604"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the matrix: Recent advances in mechanobiology unveiled through polyacrylamide hydrogels\",\"authors\":\"Giuseppe Ciccone , Manuel Salmeron-Sanchez\",\"doi\":\"10.1016/j.cobme.2025.100604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Over the past 30 years, polyacrylamide (PAAm) hydrogels have become essential tools to mimic the mechanical properties, chemical composition, and dimensionality of the extracellular matrix (ECM) in in vitro mechanobiology studies. This brief review highlights recent developments that have transformed PAAm hydrogels from simple 2D static elastic hydrogels to complex ECM-mimicking systems involving protein micropatterning, mechanical patterning, stretching, DNA tension probes, viscoelasticity, and the microfabrication of 3D systems. We focus on novel mechanobiological questions that have been elucidated using these platforms and give a perspective on the future of PAAm hydrogels for mechanobiology research.</div></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":\"35 \",\"pages\":\"Article 100604\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451125000297\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451125000297","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Tuning the matrix: Recent advances in mechanobiology unveiled through polyacrylamide hydrogels
Over the past 30 years, polyacrylamide (PAAm) hydrogels have become essential tools to mimic the mechanical properties, chemical composition, and dimensionality of the extracellular matrix (ECM) in in vitro mechanobiology studies. This brief review highlights recent developments that have transformed PAAm hydrogels from simple 2D static elastic hydrogels to complex ECM-mimicking systems involving protein micropatterning, mechanical patterning, stretching, DNA tension probes, viscoelasticity, and the microfabrication of 3D systems. We focus on novel mechanobiological questions that have been elucidated using these platforms and give a perspective on the future of PAAm hydrogels for mechanobiology research.