Henry A. Paz , Lasya Buddha , Tianfu Lam , Ying Zhong , James D. Sikes , Kartik Shankar , Aline Andres , Umesh D. Wankhade
{"title":"母亲高脂肪饮食诱导的后代肥胖:通过增加热休克蛋白介导的脂肪组织功能障碍","authors":"Henry A. Paz , Lasya Buddha , Tianfu Lam , Ying Zhong , James D. Sikes , Kartik Shankar , Aline Andres , Umesh D. Wankhade","doi":"10.1016/j.biocel.2025.106812","DOIUrl":null,"url":null,"abstract":"<div><div>Maternal weight and diet before and during pregnancy have a substantial impact on offspring metabolic health, though sex-specific differences in metabolic and adipose tissue adaptations to maternal overnutrition remain insufficiently understood. Using a mouse model of maternal high-fat (HF) diet-induced obesity, this study assessed the sexually dimorphic responses on offspring adiposity, physiology, and adipose tissue function. Male offspring of HF diet-fed dams exhibited greater weight gain and adiposity, impaired glucose homeostasis, elevated serum levels of insulin, leptin, and cholesterol, along with increased adipogenic and heat shock proteins (HSPs) gene expression in white adipose tissue compared to female offspring. In established adipocyte cell lines independent of experimental animals, the expression of HSPs during differentiation was higher in white than in brown adipocytes. Also, expression of <em>Hsp90ab1</em> in human umbilical cord mesenchymal stem cells tended to positively correlate with maternal body mass index in male, but not in female infants. This finding was generated independently of the animal model and were intended to strengthen the translational perspective of our work. Together, these results suggest a potential link between maternal diet, HSPs, and adipose tissue function.</div></div>","PeriodicalId":50335,"journal":{"name":"International Journal of Biochemistry & Cell Biology","volume":"186 ","pages":"Article 106812"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maternal high-fat diet-induced obesity in offspring: Unraveling adipose tissue dysfunction mediated by increased heat shock proteins\",\"authors\":\"Henry A. Paz , Lasya Buddha , Tianfu Lam , Ying Zhong , James D. Sikes , Kartik Shankar , Aline Andres , Umesh D. Wankhade\",\"doi\":\"10.1016/j.biocel.2025.106812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Maternal weight and diet before and during pregnancy have a substantial impact on offspring metabolic health, though sex-specific differences in metabolic and adipose tissue adaptations to maternal overnutrition remain insufficiently understood. Using a mouse model of maternal high-fat (HF) diet-induced obesity, this study assessed the sexually dimorphic responses on offspring adiposity, physiology, and adipose tissue function. Male offspring of HF diet-fed dams exhibited greater weight gain and adiposity, impaired glucose homeostasis, elevated serum levels of insulin, leptin, and cholesterol, along with increased adipogenic and heat shock proteins (HSPs) gene expression in white adipose tissue compared to female offspring. In established adipocyte cell lines independent of experimental animals, the expression of HSPs during differentiation was higher in white than in brown adipocytes. Also, expression of <em>Hsp90ab1</em> in human umbilical cord mesenchymal stem cells tended to positively correlate with maternal body mass index in male, but not in female infants. This finding was generated independently of the animal model and were intended to strengthen the translational perspective of our work. Together, these results suggest a potential link between maternal diet, HSPs, and adipose tissue function.</div></div>\",\"PeriodicalId\":50335,\"journal\":{\"name\":\"International Journal of Biochemistry & Cell Biology\",\"volume\":\"186 \",\"pages\":\"Article 106812\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biochemistry & Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1357272525000792\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biochemistry & Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272525000792","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Maternal high-fat diet-induced obesity in offspring: Unraveling adipose tissue dysfunction mediated by increased heat shock proteins
Maternal weight and diet before and during pregnancy have a substantial impact on offspring metabolic health, though sex-specific differences in metabolic and adipose tissue adaptations to maternal overnutrition remain insufficiently understood. Using a mouse model of maternal high-fat (HF) diet-induced obesity, this study assessed the sexually dimorphic responses on offspring adiposity, physiology, and adipose tissue function. Male offspring of HF diet-fed dams exhibited greater weight gain and adiposity, impaired glucose homeostasis, elevated serum levels of insulin, leptin, and cholesterol, along with increased adipogenic and heat shock proteins (HSPs) gene expression in white adipose tissue compared to female offspring. In established adipocyte cell lines independent of experimental animals, the expression of HSPs during differentiation was higher in white than in brown adipocytes. Also, expression of Hsp90ab1 in human umbilical cord mesenchymal stem cells tended to positively correlate with maternal body mass index in male, but not in female infants. This finding was generated independently of the animal model and were intended to strengthen the translational perspective of our work. Together, these results suggest a potential link between maternal diet, HSPs, and adipose tissue function.
期刊介绍:
IJBCB publishes original research articles, invited reviews and in-focus articles in all areas of cell and molecular biology and biomedical research.
Topics of interest include, but are not limited to:
-Mechanistic studies of cells, cell organelles, sub-cellular molecular pathways and metabolism
-Novel insights into disease pathogenesis
-Nanotechnology with implication to biological and medical processes
-Genomics and bioinformatics