考虑源负荷不确定性的农村综合能源系统规划与运行两阶段随机鲁棒优化

IF 5.9 Q2 ENERGY & FUELS
Minghao Liu , Hongyang Huo , Yiding Xu , Zhonghe Han , Zhiquan Wu
{"title":"考虑源负荷不确定性的农村综合能源系统规划与运行两阶段随机鲁棒优化","authors":"Minghao Liu ,&nbsp;Hongyang Huo ,&nbsp;Yiding Xu ,&nbsp;Zhonghe Han ,&nbsp;Zhiquan Wu","doi":"10.1016/j.ref.2025.100735","DOIUrl":null,"url":null,"abstract":"<div><div>The transition to renewable energy in rural areas is hindered by the inherent unpredictability of renewable resources and load demand. This study proposes a two-stage stochastic robust optimization (TS-SRO) framework to address the integrated planning and operation of rural energy systems under source-load uncertainties. The optimal capacity allocation for renewable energy generation, storage, and conversion devices is determined in the first stage, while the second stage optimizes multi-energy dispatch under uncertainty. Renewable energy fluctuations are modeled through data-driven stochastic scenarios derived from historical data using a 0–1 programming clustering method. In contrast, load uncertainties are characterized via confidence interval-based box-type uncertainty sets. A Nested Column-and-Constraint Generation (NCCG) algorithm combined with dynamic weighting is introduced to resolve the computational complexity arising from multi-objective optimization and uncertainty coupling. A case study in northern China demonstrates the model’s efficacy: compared to the baseline scenario, the TS-SRO approach reduces total energy costs by 37.62% and carbon emissions by 85.33%. Sensitivity analyses reveal that economic performance deteriorates with increasing uncertainty budgets and confidence intervals while robustness improves. Notably, biogas combined heat and power unit pricing significantly influences system economics, whereas solar water heaters and heat pumps show minimal impact.</div></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"55 ","pages":"Article 100735"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-stage stochastic robust optimization for the planning and operation of rural integrated energy systems considering source-load uncertainties\",\"authors\":\"Minghao Liu ,&nbsp;Hongyang Huo ,&nbsp;Yiding Xu ,&nbsp;Zhonghe Han ,&nbsp;Zhiquan Wu\",\"doi\":\"10.1016/j.ref.2025.100735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The transition to renewable energy in rural areas is hindered by the inherent unpredictability of renewable resources and load demand. This study proposes a two-stage stochastic robust optimization (TS-SRO) framework to address the integrated planning and operation of rural energy systems under source-load uncertainties. The optimal capacity allocation for renewable energy generation, storage, and conversion devices is determined in the first stage, while the second stage optimizes multi-energy dispatch under uncertainty. Renewable energy fluctuations are modeled through data-driven stochastic scenarios derived from historical data using a 0–1 programming clustering method. In contrast, load uncertainties are characterized via confidence interval-based box-type uncertainty sets. A Nested Column-and-Constraint Generation (NCCG) algorithm combined with dynamic weighting is introduced to resolve the computational complexity arising from multi-objective optimization and uncertainty coupling. A case study in northern China demonstrates the model’s efficacy: compared to the baseline scenario, the TS-SRO approach reduces total energy costs by 37.62% and carbon emissions by 85.33%. Sensitivity analyses reveal that economic performance deteriorates with increasing uncertainty budgets and confidence intervals while robustness improves. Notably, biogas combined heat and power unit pricing significantly influences system economics, whereas solar water heaters and heat pumps show minimal impact.</div></div>\",\"PeriodicalId\":29780,\"journal\":{\"name\":\"Renewable Energy Focus\",\"volume\":\"55 \",\"pages\":\"Article 100735\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy Focus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755008425000572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755008425000572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

农村地区向可再生能源的过渡受到可再生资源和负荷需求固有的不可预测性的阻碍。本文提出了一个两阶段随机稳健优化(TS-SRO)框架来解决源负荷不确定性下农村能源系统的综合规划与运行问题。第一阶段确定可再生能源发电、存储和转换设备的最优容量分配,第二阶段优化不确定条件下的多能调度。采用0-1规划聚类方法,通过历史数据衍生的数据驱动随机情景对可再生能源波动进行建模。相反,载荷不确定性是通过基于置信区间的盒型不确定性集来表征的。为了解决多目标优化和不确定性耦合带来的计算复杂度问题,提出了一种与动态加权相结合的嵌套列约束生成算法。通过对中国北方地区的一个案例研究,验证了该模型的有效性:与基线情景相比,TS-SRO方法的总能源成本降低了37.62%,碳排放降低了85.33%。敏感性分析表明,经济绩效随着不确定性预算和置信区间的增加而恶化,而鲁棒性则有所提高。值得注意的是,沼气热电联产机组的价格显著影响系统经济,而太阳能热水器和热泵的影响最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-stage stochastic robust optimization for the planning and operation of rural integrated energy systems considering source-load uncertainties
The transition to renewable energy in rural areas is hindered by the inherent unpredictability of renewable resources and load demand. This study proposes a two-stage stochastic robust optimization (TS-SRO) framework to address the integrated planning and operation of rural energy systems under source-load uncertainties. The optimal capacity allocation for renewable energy generation, storage, and conversion devices is determined in the first stage, while the second stage optimizes multi-energy dispatch under uncertainty. Renewable energy fluctuations are modeled through data-driven stochastic scenarios derived from historical data using a 0–1 programming clustering method. In contrast, load uncertainties are characterized via confidence interval-based box-type uncertainty sets. A Nested Column-and-Constraint Generation (NCCG) algorithm combined with dynamic weighting is introduced to resolve the computational complexity arising from multi-objective optimization and uncertainty coupling. A case study in northern China demonstrates the model’s efficacy: compared to the baseline scenario, the TS-SRO approach reduces total energy costs by 37.62% and carbon emissions by 85.33%. Sensitivity analyses reveal that economic performance deteriorates with increasing uncertainty budgets and confidence intervals while robustness improves. Notably, biogas combined heat and power unit pricing significantly influences system economics, whereas solar water heaters and heat pumps show minimal impact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy Focus
Renewable Energy Focus Renewable Energy, Sustainability and the Environment
CiteScore
7.10
自引率
8.30%
发文量
0
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信