Daofeng Mei , Francisco García-Labiano , Alberto Abad , Iñaki Adánez-Rubio , Tobias Mattisson
{"title":"微藻化学环气化钛铁矿、锰矿、LD渣和铁砂氧载体的评价","authors":"Daofeng Mei , Francisco García-Labiano , Alberto Abad , Iñaki Adánez-Rubio , Tobias Mattisson","doi":"10.1016/j.fuproc.2025.108266","DOIUrl":null,"url":null,"abstract":"<div><div>Microalgae could be a sustainable feedstock for production of liquid biofuels. However, as such fuels contain significant fractions of reactive ash species, it is necessary to deploy synthesis routes which can handle such “dirty” fuels. Chemical-looping gasification (CLG) has the potential to convert such feedstocks and generate a concentrated syngas stream, a common precursor for liquid fuel production. Suitable functional oxygen carriers are key for CLG, and herein we report our new work in fluidized-bed tests with four oxygen carriers, namely ilmenite, MnGBhne, LD slag and iron sand. These materials are economically viable natural ores or industrial by-products. The oxygen carrier is reduced to different oxidation degrees (0.2, 0.5, 1) at typical temperatures (850, 900, 950 °C) to define equal material states prior to the gasification. We found that the LD slag and iron sand had the highest gasification rate and fluidized well without agglomeration, thus they are selected as suitable oxygen carriers for the process. Several factors including catalysis, water splitting and water-gas shift are comprehensively discussed with regard to the outstanding performance of LD slag and iron sand. Calcium catalysis is deemed as a key reason for the fast gasification and a mechanism of this is proposed.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"275 ","pages":"Article 108266"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of ilmenite, manganese ore, LD slag and iron sand oxygen carriers for chemical looping gasification with microalgae\",\"authors\":\"Daofeng Mei , Francisco García-Labiano , Alberto Abad , Iñaki Adánez-Rubio , Tobias Mattisson\",\"doi\":\"10.1016/j.fuproc.2025.108266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microalgae could be a sustainable feedstock for production of liquid biofuels. However, as such fuels contain significant fractions of reactive ash species, it is necessary to deploy synthesis routes which can handle such “dirty” fuels. Chemical-looping gasification (CLG) has the potential to convert such feedstocks and generate a concentrated syngas stream, a common precursor for liquid fuel production. Suitable functional oxygen carriers are key for CLG, and herein we report our new work in fluidized-bed tests with four oxygen carriers, namely ilmenite, MnGBhne, LD slag and iron sand. These materials are economically viable natural ores or industrial by-products. The oxygen carrier is reduced to different oxidation degrees (0.2, 0.5, 1) at typical temperatures (850, 900, 950 °C) to define equal material states prior to the gasification. We found that the LD slag and iron sand had the highest gasification rate and fluidized well without agglomeration, thus they are selected as suitable oxygen carriers for the process. Several factors including catalysis, water splitting and water-gas shift are comprehensively discussed with regard to the outstanding performance of LD slag and iron sand. Calcium catalysis is deemed as a key reason for the fast gasification and a mechanism of this is proposed.</div></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"275 \",\"pages\":\"Article 108266\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378382025000906\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025000906","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Evaluation of ilmenite, manganese ore, LD slag and iron sand oxygen carriers for chemical looping gasification with microalgae
Microalgae could be a sustainable feedstock for production of liquid biofuels. However, as such fuels contain significant fractions of reactive ash species, it is necessary to deploy synthesis routes which can handle such “dirty” fuels. Chemical-looping gasification (CLG) has the potential to convert such feedstocks and generate a concentrated syngas stream, a common precursor for liquid fuel production. Suitable functional oxygen carriers are key for CLG, and herein we report our new work in fluidized-bed tests with four oxygen carriers, namely ilmenite, MnGBhne, LD slag and iron sand. These materials are economically viable natural ores or industrial by-products. The oxygen carrier is reduced to different oxidation degrees (0.2, 0.5, 1) at typical temperatures (850, 900, 950 °C) to define equal material states prior to the gasification. We found that the LD slag and iron sand had the highest gasification rate and fluidized well without agglomeration, thus they are selected as suitable oxygen carriers for the process. Several factors including catalysis, water splitting and water-gas shift are comprehensively discussed with regard to the outstanding performance of LD slag and iron sand. Calcium catalysis is deemed as a key reason for the fast gasification and a mechanism of this is proposed.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.