Unyong Kim , Sumin Seo , Jiyu Kim , Chohee Jeong , Woojin Jeong , Han Young Eom , Joon Hyuk Suh , Junghyun Kim , Hyun-Deok Cho , Sang Beom Han
{"title":"电化学氧化系统模拟西地那非的代谢","authors":"Unyong Kim , Sumin Seo , Jiyu Kim , Chohee Jeong , Woojin Jeong , Han Young Eom , Joon Hyuk Suh , Junghyun Kim , Hyun-Deok Cho , Sang Beom Han","doi":"10.1016/j.jchromb.2025.124695","DOIUrl":null,"url":null,"abstract":"<div><div>Drug metabolism studies play a pivotal role in drug development, as they help predict the toxicity of newly developed drugs. Traditional approaches for drug metabolism studies often utilize cytochrome P450 systems, such as liver microsomes and hepatocytes. Recently, electrochemical oxidation systems have emerged as a promising alternative, capable of simulating phase I metabolic reactions, including hydroxylation, <em>N</em>-dealkyation, <em>S</em>-oxidation, <em>P</em>-oxidation, and dehydrogenation. Additionally, mass spectrometry (MS) has become indispensable in drug metabolism research due to its ability to detect trace amounts of metabolites and elucidate the structures of unknown metabolites using tandem MS spectra. In this study, we simulated sildenafil metabolism using an electrochemical oxidation system. The similarity between metabolic profiles generated by the electrochemical oxidation system and the liver microsomal incubation system was assessed using Pearson's correlation coefficient. A total of 96 metabolites and oxidation products were detected in both systems. Among the tested conditions, the profile of oxidation products generated at the glassy carbon electrode (ammonium acetate, pH 8.0) showed the highest correlation with the metabolic profile from the human liver microsome system at 25 μmol/L of sildenafil, highlighting the ability of this electrochemical setup to effectively mimic in vitro microsomal metabolism. In conclusion, while electrochemical oxidation systems cannot entirely replace traditional in vitro metabolism models, such as liver microsomes, S9 fractions, and hepatocytes, these findings highlight the importance of EC systems as complementary tools in metabolic studies, opening new avenues for progress in drug metabolism research.</div></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1263 ","pages":"Article 124695"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of sildenafil metabolism using an electrochemical oxidation system\",\"authors\":\"Unyong Kim , Sumin Seo , Jiyu Kim , Chohee Jeong , Woojin Jeong , Han Young Eom , Joon Hyuk Suh , Junghyun Kim , Hyun-Deok Cho , Sang Beom Han\",\"doi\":\"10.1016/j.jchromb.2025.124695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drug metabolism studies play a pivotal role in drug development, as they help predict the toxicity of newly developed drugs. Traditional approaches for drug metabolism studies often utilize cytochrome P450 systems, such as liver microsomes and hepatocytes. Recently, electrochemical oxidation systems have emerged as a promising alternative, capable of simulating phase I metabolic reactions, including hydroxylation, <em>N</em>-dealkyation, <em>S</em>-oxidation, <em>P</em>-oxidation, and dehydrogenation. Additionally, mass spectrometry (MS) has become indispensable in drug metabolism research due to its ability to detect trace amounts of metabolites and elucidate the structures of unknown metabolites using tandem MS spectra. In this study, we simulated sildenafil metabolism using an electrochemical oxidation system. The similarity between metabolic profiles generated by the electrochemical oxidation system and the liver microsomal incubation system was assessed using Pearson's correlation coefficient. A total of 96 metabolites and oxidation products were detected in both systems. Among the tested conditions, the profile of oxidation products generated at the glassy carbon electrode (ammonium acetate, pH 8.0) showed the highest correlation with the metabolic profile from the human liver microsome system at 25 μmol/L of sildenafil, highlighting the ability of this electrochemical setup to effectively mimic in vitro microsomal metabolism. In conclusion, while electrochemical oxidation systems cannot entirely replace traditional in vitro metabolism models, such as liver microsomes, S9 fractions, and hepatocytes, these findings highlight the importance of EC systems as complementary tools in metabolic studies, opening new avenues for progress in drug metabolism research.</div></div>\",\"PeriodicalId\":348,\"journal\":{\"name\":\"Journal of Chromatography B\",\"volume\":\"1263 \",\"pages\":\"Article 124695\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570023225002491\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023225002491","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Simulation of sildenafil metabolism using an electrochemical oxidation system
Drug metabolism studies play a pivotal role in drug development, as they help predict the toxicity of newly developed drugs. Traditional approaches for drug metabolism studies often utilize cytochrome P450 systems, such as liver microsomes and hepatocytes. Recently, electrochemical oxidation systems have emerged as a promising alternative, capable of simulating phase I metabolic reactions, including hydroxylation, N-dealkyation, S-oxidation, P-oxidation, and dehydrogenation. Additionally, mass spectrometry (MS) has become indispensable in drug metabolism research due to its ability to detect trace amounts of metabolites and elucidate the structures of unknown metabolites using tandem MS spectra. In this study, we simulated sildenafil metabolism using an electrochemical oxidation system. The similarity between metabolic profiles generated by the electrochemical oxidation system and the liver microsomal incubation system was assessed using Pearson's correlation coefficient. A total of 96 metabolites and oxidation products were detected in both systems. Among the tested conditions, the profile of oxidation products generated at the glassy carbon electrode (ammonium acetate, pH 8.0) showed the highest correlation with the metabolic profile from the human liver microsome system at 25 μmol/L of sildenafil, highlighting the ability of this electrochemical setup to effectively mimic in vitro microsomal metabolism. In conclusion, while electrochemical oxidation systems cannot entirely replace traditional in vitro metabolism models, such as liver microsomes, S9 fractions, and hepatocytes, these findings highlight the importance of EC systems as complementary tools in metabolic studies, opening new avenues for progress in drug metabolism research.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.