基于lsamvy跃变噪声的周期性随机控制非线性开关系统的随机镇定与失稳

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Ruizhuang Zhang , Wei Qian
{"title":"基于lsamvy跃变噪声的周期性随机控制非线性开关系统的随机镇定与失稳","authors":"Ruizhuang Zhang ,&nbsp;Wei Qian","doi":"10.1016/j.sysconle.2025.106165","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this paper is to determine whether or not periodic stochastic feedback controls can stabilize or destabilize a given nonlinear switched system described by Markovian switching stochastic differential equations (MS-SDEs) with Lévy jump noise. The time-inhomogeneous property of the drift, diffusion and Lévy jump coefficient functions are used to establish some sufficient conditions on almost surely exponential stability and instability of stochastic switched system described by MS-SDEs with Lévy jump noise. Based on the established results on stability and instability, we use Brownian motion and Lévy jump as noise sources to design stochastic feedback controls to stabilize or destabilize a given unstable (or stable) Markovian switching ordinary differential equations (MS-ODEs) system. Two examples and simulations are given to illustrate our theory.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"203 ","pages":"Article 106165"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic stabilization and destabilization of nonlinear switched system by periodic stochastic controls based on Lévy jump noise\",\"authors\":\"Ruizhuang Zhang ,&nbsp;Wei Qian\",\"doi\":\"10.1016/j.sysconle.2025.106165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of this paper is to determine whether or not periodic stochastic feedback controls can stabilize or destabilize a given nonlinear switched system described by Markovian switching stochastic differential equations (MS-SDEs) with Lévy jump noise. The time-inhomogeneous property of the drift, diffusion and Lévy jump coefficient functions are used to establish some sufficient conditions on almost surely exponential stability and instability of stochastic switched system described by MS-SDEs with Lévy jump noise. Based on the established results on stability and instability, we use Brownian motion and Lévy jump as noise sources to design stochastic feedback controls to stabilize or destabilize a given unstable (or stable) Markovian switching ordinary differential equations (MS-ODEs) system. Two examples and simulations are given to illustrate our theory.</div></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"203 \",\"pages\":\"Article 106165\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691125001471\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125001471","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是确定周期随机反馈控制是否能够稳定或不稳定一个给定的非线性切换系统,该系统由马尔可夫切换随机微分方程(MS-SDEs)描述,具有lsamvy跳变噪声。利用漂移、扩散和lsamvy跳变系数函数的时间非齐次性,建立了具有lsamvy跳变噪声的MS-SDEs描述的随机开关系统几乎肯定指数稳定和不稳定的充分条件。在稳定性和不稳定性研究结果的基础上,采用布朗运动和lsamvy跳变作为噪声源,设计随机反馈控制来稳定或破坏给定的不稳定(或稳定)马尔可夫切换常微分方程(ms - ode)系统。给出了两个例子和仿真来说明我们的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic stabilization and destabilization of nonlinear switched system by periodic stochastic controls based on Lévy jump noise
The aim of this paper is to determine whether or not periodic stochastic feedback controls can stabilize or destabilize a given nonlinear switched system described by Markovian switching stochastic differential equations (MS-SDEs) with Lévy jump noise. The time-inhomogeneous property of the drift, diffusion and Lévy jump coefficient functions are used to establish some sufficient conditions on almost surely exponential stability and instability of stochastic switched system described by MS-SDEs with Lévy jump noise. Based on the established results on stability and instability, we use Brownian motion and Lévy jump as noise sources to design stochastic feedback controls to stabilize or destabilize a given unstable (or stable) Markovian switching ordinary differential equations (MS-ODEs) system. Two examples and simulations are given to illustrate our theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信