{"title":"衰老脑中的DNA甲基化和羟甲基化动力学及其对缺血性脑卒中的影响","authors":"Vijay Arruri , Pallavi Joshi , Raghu Vemuganti","doi":"10.1016/j.neuint.2025.106007","DOIUrl":null,"url":null,"abstract":"<div><div>DNA methylation and hydroxymethylation patterns at the 5th carbon of cytosine (5mC and 5hmC) in CpG dinucleotides tightly regulate gene transcription in normal physiology, aging, and associated diseases, including ischemic stroke. Resilience to ischemic brain injury depends on the interplay of diverse neural and non-neural cell types, whose gene expression and identity are predominantly regulated by brain-enriched epigenetic mechanisms, particularly the dynamics of 5mC and 5hmC in response to changing transcriptional demands under ischemic stress. In this review, we discussed the role of 5mC and 5hmC in aging and the pathophysiology of stroke. Given the high degree of inter-individual variability in stroke studies and its multifactorial etiology, we emphasize the need for personalized, temporally controlled, epigenome-based therapies to improve stroke outcomes.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"188 ","pages":"Article 106007"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA methylation and hydroxymethylation dynamics in the aging brain and its impact on ischemic stroke\",\"authors\":\"Vijay Arruri , Pallavi Joshi , Raghu Vemuganti\",\"doi\":\"10.1016/j.neuint.2025.106007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>DNA methylation and hydroxymethylation patterns at the 5th carbon of cytosine (5mC and 5hmC) in CpG dinucleotides tightly regulate gene transcription in normal physiology, aging, and associated diseases, including ischemic stroke. Resilience to ischemic brain injury depends on the interplay of diverse neural and non-neural cell types, whose gene expression and identity are predominantly regulated by brain-enriched epigenetic mechanisms, particularly the dynamics of 5mC and 5hmC in response to changing transcriptional demands under ischemic stress. In this review, we discussed the role of 5mC and 5hmC in aging and the pathophysiology of stroke. Given the high degree of inter-individual variability in stroke studies and its multifactorial etiology, we emphasize the need for personalized, temporally controlled, epigenome-based therapies to improve stroke outcomes.</div></div>\",\"PeriodicalId\":398,\"journal\":{\"name\":\"Neurochemistry international\",\"volume\":\"188 \",\"pages\":\"Article 106007\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemistry international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0197018625000804\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018625000804","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
DNA methylation and hydroxymethylation dynamics in the aging brain and its impact on ischemic stroke
DNA methylation and hydroxymethylation patterns at the 5th carbon of cytosine (5mC and 5hmC) in CpG dinucleotides tightly regulate gene transcription in normal physiology, aging, and associated diseases, including ischemic stroke. Resilience to ischemic brain injury depends on the interplay of diverse neural and non-neural cell types, whose gene expression and identity are predominantly regulated by brain-enriched epigenetic mechanisms, particularly the dynamics of 5mC and 5hmC in response to changing transcriptional demands under ischemic stress. In this review, we discussed the role of 5mC and 5hmC in aging and the pathophysiology of stroke. Given the high degree of inter-individual variability in stroke studies and its multifactorial etiology, we emphasize the need for personalized, temporally controlled, epigenome-based therapies to improve stroke outcomes.
期刊介绍:
Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.