衰老脑中的DNA甲基化和羟甲基化动力学及其对缺血性脑卒中的影响

IF 4 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Vijay Arruri , Pallavi Joshi , Raghu Vemuganti
{"title":"衰老脑中的DNA甲基化和羟甲基化动力学及其对缺血性脑卒中的影响","authors":"Vijay Arruri ,&nbsp;Pallavi Joshi ,&nbsp;Raghu Vemuganti","doi":"10.1016/j.neuint.2025.106007","DOIUrl":null,"url":null,"abstract":"<div><div>DNA methylation and hydroxymethylation patterns at the 5th carbon of cytosine (5mC and 5hmC) in CpG dinucleotides tightly regulate gene transcription in normal physiology, aging, and associated diseases, including ischemic stroke. Resilience to ischemic brain injury depends on the interplay of diverse neural and non-neural cell types, whose gene expression and identity are predominantly regulated by brain-enriched epigenetic mechanisms, particularly the dynamics of 5mC and 5hmC in response to changing transcriptional demands under ischemic stress. In this review, we discussed the role of 5mC and 5hmC in aging and the pathophysiology of stroke. Given the high degree of inter-individual variability in stroke studies and its multifactorial etiology, we emphasize the need for personalized, temporally controlled, epigenome-based therapies to improve stroke outcomes.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"188 ","pages":"Article 106007"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA methylation and hydroxymethylation dynamics in the aging brain and its impact on ischemic stroke\",\"authors\":\"Vijay Arruri ,&nbsp;Pallavi Joshi ,&nbsp;Raghu Vemuganti\",\"doi\":\"10.1016/j.neuint.2025.106007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>DNA methylation and hydroxymethylation patterns at the 5th carbon of cytosine (5mC and 5hmC) in CpG dinucleotides tightly regulate gene transcription in normal physiology, aging, and associated diseases, including ischemic stroke. Resilience to ischemic brain injury depends on the interplay of diverse neural and non-neural cell types, whose gene expression and identity are predominantly regulated by brain-enriched epigenetic mechanisms, particularly the dynamics of 5mC and 5hmC in response to changing transcriptional demands under ischemic stress. In this review, we discussed the role of 5mC and 5hmC in aging and the pathophysiology of stroke. Given the high degree of inter-individual variability in stroke studies and its multifactorial etiology, we emphasize the need for personalized, temporally controlled, epigenome-based therapies to improve stroke outcomes.</div></div>\",\"PeriodicalId\":398,\"journal\":{\"name\":\"Neurochemistry international\",\"volume\":\"188 \",\"pages\":\"Article 106007\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemistry international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0197018625000804\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018625000804","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

CpG二核苷酸中胞嘧啶第5碳(5mC和5hmC)的DNA甲基化和羟甲基化模式密切调节正常生理、衰老和相关疾病(包括缺血性中风)的基因转录。对缺血性脑损伤的恢复取决于多种神经和非神经细胞类型的相互作用,其基因表达和身份主要由脑富集的表观遗传机制调节,特别是5mC和5hmC在缺血应激下响应转录需求变化的动态。本文就5mC和5hmC在衰老和脑卒中病理生理中的作用进行综述。鉴于卒中研究的高度个体间变异性及其多因素病因学,我们强调需要个性化、暂时控制、基于表观基因组的治疗来改善卒中预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNA methylation and hydroxymethylation dynamics in the aging brain and its impact on ischemic stroke
DNA methylation and hydroxymethylation patterns at the 5th carbon of cytosine (5mC and 5hmC) in CpG dinucleotides tightly regulate gene transcription in normal physiology, aging, and associated diseases, including ischemic stroke. Resilience to ischemic brain injury depends on the interplay of diverse neural and non-neural cell types, whose gene expression and identity are predominantly regulated by brain-enriched epigenetic mechanisms, particularly the dynamics of 5mC and 5hmC in response to changing transcriptional demands under ischemic stress. In this review, we discussed the role of 5mC and 5hmC in aging and the pathophysiology of stroke. Given the high degree of inter-individual variability in stroke studies and its multifactorial etiology, we emphasize the need for personalized, temporally controlled, epigenome-based therapies to improve stroke outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurochemistry international
Neurochemistry international 医学-神经科学
CiteScore
8.40
自引率
2.40%
发文量
128
审稿时长
37 days
期刊介绍: Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信