高熵合金耐腐蚀性能预测:模型、解释和多维可视化框架

IF 7.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Guangxuan Song , Dongmei Fu , Weiwei Chang , Zhongheng Fu , Lingwei Ma , Dawei Zhang
{"title":"高熵合金耐腐蚀性能预测:模型、解释和多维可视化框架","authors":"Guangxuan Song ,&nbsp;Dongmei Fu ,&nbsp;Weiwei Chang ,&nbsp;Zhongheng Fu ,&nbsp;Lingwei Ma ,&nbsp;Dawei Zhang","doi":"10.1016/j.corsci.2025.113105","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a multi-model ensemble-based framework for High-entropy alloy (HEA) corrosion resistance prediction and interpretation. The NRKG-S model first predicts the crystal structure based on composition and processing, followed by corrosion resistance prediction. The Cross-Validation Model-Based Integrated Prediction and High-Dimensional Interpretative Visualization Methods explore the full compositional and processing space, providing insights into the relationships between composition, processing, and corrosion resistance. Experimental results show the framework accurately predicts HEA corrosion resistance, and the partial conclusions regarding model interpretability align with existing studies, offering new perspectives for material design, optimization, and understanding machine learning models.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"255 ","pages":"Article 113105"},"PeriodicalIF":7.4000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion resistant performance prediction in high-entropy alloys: A framework for model, interpretation and multi-dimensional visualization\",\"authors\":\"Guangxuan Song ,&nbsp;Dongmei Fu ,&nbsp;Weiwei Chang ,&nbsp;Zhongheng Fu ,&nbsp;Lingwei Ma ,&nbsp;Dawei Zhang\",\"doi\":\"10.1016/j.corsci.2025.113105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a multi-model ensemble-based framework for High-entropy alloy (HEA) corrosion resistance prediction and interpretation. The NRKG-S model first predicts the crystal structure based on composition and processing, followed by corrosion resistance prediction. The Cross-Validation Model-Based Integrated Prediction and High-Dimensional Interpretative Visualization Methods explore the full compositional and processing space, providing insights into the relationships between composition, processing, and corrosion resistance. Experimental results show the framework accurately predicts HEA corrosion resistance, and the partial conclusions regarding model interpretability align with existing studies, offering new perspectives for material design, optimization, and understanding machine learning models.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"255 \",\"pages\":\"Article 113105\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X25004329\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25004329","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于多模型集成的高熵合金(HEA)耐蚀性预测和解释框架。NRKG-S模型首先根据成分和工艺预测晶体结构,然后进行耐蚀性预测。基于交叉验证模型的集成预测和高维解释可视化方法探索了完整的成分和加工空间,为成分、加工和耐腐蚀性之间的关系提供了见解。实验结果表明,该框架可以准确预测HEA耐腐蚀性,并且关于模型可解释性的部分结论与现有研究一致,为材料设计、优化和理解机器学习模型提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corrosion resistant performance prediction in high-entropy alloys: A framework for model, interpretation and multi-dimensional visualization
This study proposes a multi-model ensemble-based framework for High-entropy alloy (HEA) corrosion resistance prediction and interpretation. The NRKG-S model first predicts the crystal structure based on composition and processing, followed by corrosion resistance prediction. The Cross-Validation Model-Based Integrated Prediction and High-Dimensional Interpretative Visualization Methods explore the full compositional and processing space, providing insights into the relationships between composition, processing, and corrosion resistance. Experimental results show the framework accurately predicts HEA corrosion resistance, and the partial conclusions regarding model interpretability align with existing studies, offering new perspectives for material design, optimization, and understanding machine learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Corrosion Science
Corrosion Science 工程技术-材料科学:综合
CiteScore
13.60
自引率
18.10%
发文量
763
审稿时长
46 days
期刊介绍: Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies. This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信