具有Navier边界条件的板上稳定Navier- stokes系统的liouville型定理

IF 2.4 2区 数学 Q1 MATHEMATICS
Jingwen Han , Yun Wang , Chunjing Xie
{"title":"具有Navier边界条件的板上稳定Navier- stokes系统的liouville型定理","authors":"Jingwen Han ,&nbsp;Yun Wang ,&nbsp;Chunjing Xie","doi":"10.1016/j.jde.2025.113556","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the Liouville-type theorems for the steady Navier-Stokes system in a slab supplemented with Navier boundary conditions are investigated. Specifically, we prove that any bounded smooth solution must be zero if either the swirl or radial velocity is axisymmetric, or <span><math><mi>r</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> decays to zero as <em>r</em> tends to infinity. When the velocity is not big in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-space, the general three-dimensional steady Navier-Stokes flow in a slab with the Navier boundary conditions must be a Poiseuille type flow. The key idea of the proof is to establish the Saint-Venant type estimates that characterize the growth of Dirichlet integral of nontrivial solutions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113556"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liouville-type theorems for steady Navier-Stokes system in a slab with Navier boundary conditions\",\"authors\":\"Jingwen Han ,&nbsp;Yun Wang ,&nbsp;Chunjing Xie\",\"doi\":\"10.1016/j.jde.2025.113556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, the Liouville-type theorems for the steady Navier-Stokes system in a slab supplemented with Navier boundary conditions are investigated. Specifically, we prove that any bounded smooth solution must be zero if either the swirl or radial velocity is axisymmetric, or <span><math><mi>r</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> decays to zero as <em>r</em> tends to infinity. When the velocity is not big in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>-space, the general three-dimensional steady Navier-Stokes flow in a slab with the Navier boundary conditions must be a Poiseuille type flow. The key idea of the proof is to establish the Saint-Venant type estimates that characterize the growth of Dirichlet integral of nontrivial solutions.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"443 \",\"pages\":\"Article 113556\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005832\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005832","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有Navier边界条件的平板上稳定Navier- stokes系统的liouville型定理。具体地说,我们证明了任何有界光滑解必须为零,当旋流速度或径向速度是轴对称的,或者当r趋于无穷时r衰减为零。在L∞空间中,当速度不大时,具有Navier边界条件的平板中一般三维定常Navier- stokes流动必然是泊泽维尔型流动。证明的关键思想是建立表征非平凡解狄利克雷积分增长的Saint-Venant型估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Liouville-type theorems for steady Navier-Stokes system in a slab with Navier boundary conditions
In this paper, the Liouville-type theorems for the steady Navier-Stokes system in a slab supplemented with Navier boundary conditions are investigated. Specifically, we prove that any bounded smooth solution must be zero if either the swirl or radial velocity is axisymmetric, or rur decays to zero as r tends to infinity. When the velocity is not big in L-space, the general three-dimensional steady Navier-Stokes flow in a slab with the Navier boundary conditions must be a Poiseuille type flow. The key idea of the proof is to establish the Saint-Venant type estimates that characterize the growth of Dirichlet integral of nontrivial solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信