具有指数多极值结构的非退化超图

IF 1.2 1区 数学 Q1 MATHEMATICS
József Balogh , Felix Christian Clemen , Haoran Luo
{"title":"具有指数多极值结构的非退化超图","authors":"József Balogh ,&nbsp;Felix Christian Clemen ,&nbsp;Haoran Luo","doi":"10.1016/j.jctb.2025.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>For every integer <span><math><mi>t</mi><mo>⩾</mo><mn>0</mn></math></span>, denote by <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> the hypergraph on vertex set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>5</mn><mo>+</mo><mi>t</mi><mo>}</mo></math></span> with hyperedges <span><math><mo>{</mo><mn>123</mn><mo>,</mo><mn>124</mn><mo>}</mo><mo>∪</mo><mo>{</mo><mn>34</mn><mi>k</mi><mo>:</mo><mn>5</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mn>5</mn><mo>+</mo><mi>t</mi><mo>}</mo></math></span>. We determine <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup><mo>)</mo></math></span> for every <span><math><mi>t</mi><mo>⩾</mo><mn>0</mn></math></span> and sufficiently large <em>n</em> and characterize the extremal <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span>-free hypergraphs. In particular, if <em>n</em> satisfies certain divisibility conditions, then the extremal <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span>-free hypergraphs are exactly the balanced complete tripartite hypergraphs with additional hyperedges inside each of the three parts <span><math><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> in the partition; each part <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> spans a <span><math><mo>(</mo><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>,</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-design. This generalizes earlier work of Frankl and Füredi on the Turán number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>:</mo><mo>=</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mn>0</mn></mrow></msubsup></math></span>.</div><div>Our results extend a theory of Erdős and Simonovits about the extremal constructions for certain fixed graphs. In particular, the hypergraphs <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mn>6</mn><mi>t</mi></mrow></msubsup></math></span>, for <span><math><mi>t</mi><mo>⩾</mo><mn>1</mn></math></span>, are the first examples of hypergraphs with exponentially many extremal constructions and positive Turán density.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 1-28"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-degenerate hypergraphs with exponentially many extremal constructions\",\"authors\":\"József Balogh ,&nbsp;Felix Christian Clemen ,&nbsp;Haoran Luo\",\"doi\":\"10.1016/j.jctb.2025.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For every integer <span><math><mi>t</mi><mo>⩾</mo><mn>0</mn></math></span>, denote by <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> the hypergraph on vertex set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>5</mn><mo>+</mo><mi>t</mi><mo>}</mo></math></span> with hyperedges <span><math><mo>{</mo><mn>123</mn><mo>,</mo><mn>124</mn><mo>}</mo><mo>∪</mo><mo>{</mo><mn>34</mn><mi>k</mi><mo>:</mo><mn>5</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mn>5</mn><mo>+</mo><mi>t</mi><mo>}</mo></math></span>. We determine <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup><mo>)</mo></math></span> for every <span><math><mi>t</mi><mo>⩾</mo><mn>0</mn></math></span> and sufficiently large <em>n</em> and characterize the extremal <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span>-free hypergraphs. In particular, if <em>n</em> satisfies certain divisibility conditions, then the extremal <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span>-free hypergraphs are exactly the balanced complete tripartite hypergraphs with additional hyperedges inside each of the three parts <span><math><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> in the partition; each part <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> spans a <span><math><mo>(</mo><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>,</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-design. This generalizes earlier work of Frankl and Füredi on the Turán number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>:</mo><mo>=</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mn>0</mn></mrow></msubsup></math></span>.</div><div>Our results extend a theory of Erdős and Simonovits about the extremal constructions for certain fixed graphs. In particular, the hypergraphs <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mn>6</mn><mi>t</mi></mrow></msubsup></math></span>, for <span><math><mi>t</mi><mo>⩾</mo><mn>1</mn></math></span>, are the first examples of hypergraphs with exponentially many extremal constructions and positive Turán density.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"175 \",\"pages\":\"Pages 1-28\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000401\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000401","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于每个整数t小于0,用F5t表示顶点集{1,2,…,5+t}上的超图,超边{123,124}∪{34k:5≤k≤5+t}。我们为每个t小于0和足够大的n确定ex(n,F5t),并表征极端无F5t超图。特别地,如果n满足一定的可除性条件,则无f5t极值超图就是分区中三个部分(V1,V2,V3)内各有附加超边的平衡完全三部超图;每个部分Vi跨越一个(|Vi|,3,2,t)-设计。这概括了Frankl和f redi关于F5:=F50的Turán数的早期工作。我们的结果推广了Erdős和Simonovits关于某些固定图的极值结构的理论。特别是,对于t大于或等于1的超图F56t,是具有指数级许多极值结构和正Turán密度的超图的第一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-degenerate hypergraphs with exponentially many extremal constructions
For every integer t0, denote by F5t the hypergraph on vertex set {1,2,,5+t} with hyperedges {123,124}{34k:5k5+t}. We determine ex(n,F5t) for every t0 and sufficiently large n and characterize the extremal F5t-free hypergraphs. In particular, if n satisfies certain divisibility conditions, then the extremal F5t-free hypergraphs are exactly the balanced complete tripartite hypergraphs with additional hyperedges inside each of the three parts (V1,V2,V3) in the partition; each part Vi spans a (|Vi|,3,2,t)-design. This generalizes earlier work of Frankl and Füredi on the Turán number of F5:=F50.
Our results extend a theory of Erdős and Simonovits about the extremal constructions for certain fixed graphs. In particular, the hypergraphs F56t, for t1, are the first examples of hypergraphs with exponentially many extremal constructions and positive Turán density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信