József Balogh , Felix Christian Clemen , Haoran Luo
{"title":"具有指数多极值结构的非退化超图","authors":"József Balogh , Felix Christian Clemen , Haoran Luo","doi":"10.1016/j.jctb.2025.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>For every integer <span><math><mi>t</mi><mo>⩾</mo><mn>0</mn></math></span>, denote by <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> the hypergraph on vertex set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>5</mn><mo>+</mo><mi>t</mi><mo>}</mo></math></span> with hyperedges <span><math><mo>{</mo><mn>123</mn><mo>,</mo><mn>124</mn><mo>}</mo><mo>∪</mo><mo>{</mo><mn>34</mn><mi>k</mi><mo>:</mo><mn>5</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mn>5</mn><mo>+</mo><mi>t</mi><mo>}</mo></math></span>. We determine <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup><mo>)</mo></math></span> for every <span><math><mi>t</mi><mo>⩾</mo><mn>0</mn></math></span> and sufficiently large <em>n</em> and characterize the extremal <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span>-free hypergraphs. In particular, if <em>n</em> satisfies certain divisibility conditions, then the extremal <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span>-free hypergraphs are exactly the balanced complete tripartite hypergraphs with additional hyperedges inside each of the three parts <span><math><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> in the partition; each part <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> spans a <span><math><mo>(</mo><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>,</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-design. This generalizes earlier work of Frankl and Füredi on the Turán number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>:</mo><mo>=</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mn>0</mn></mrow></msubsup></math></span>.</div><div>Our results extend a theory of Erdős and Simonovits about the extremal constructions for certain fixed graphs. In particular, the hypergraphs <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mn>6</mn><mi>t</mi></mrow></msubsup></math></span>, for <span><math><mi>t</mi><mo>⩾</mo><mn>1</mn></math></span>, are the first examples of hypergraphs with exponentially many extremal constructions and positive Turán density.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 1-28"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-degenerate hypergraphs with exponentially many extremal constructions\",\"authors\":\"József Balogh , Felix Christian Clemen , Haoran Luo\",\"doi\":\"10.1016/j.jctb.2025.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For every integer <span><math><mi>t</mi><mo>⩾</mo><mn>0</mn></math></span>, denote by <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span> the hypergraph on vertex set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>5</mn><mo>+</mo><mi>t</mi><mo>}</mo></math></span> with hyperedges <span><math><mo>{</mo><mn>123</mn><mo>,</mo><mn>124</mn><mo>}</mo><mo>∪</mo><mo>{</mo><mn>34</mn><mi>k</mi><mo>:</mo><mn>5</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mn>5</mn><mo>+</mo><mi>t</mi><mo>}</mo></math></span>. We determine <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup><mo>)</mo></math></span> for every <span><math><mi>t</mi><mo>⩾</mo><mn>0</mn></math></span> and sufficiently large <em>n</em> and characterize the extremal <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span>-free hypergraphs. In particular, if <em>n</em> satisfies certain divisibility conditions, then the extremal <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mi>t</mi></mrow></msubsup></math></span>-free hypergraphs are exactly the balanced complete tripartite hypergraphs with additional hyperedges inside each of the three parts <span><math><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> in the partition; each part <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> spans a <span><math><mo>(</mo><mo>|</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>,</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-design. This generalizes earlier work of Frankl and Füredi on the Turán number of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>:</mo><mo>=</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mn>0</mn></mrow></msubsup></math></span>.</div><div>Our results extend a theory of Erdős and Simonovits about the extremal constructions for certain fixed graphs. In particular, the hypergraphs <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mn>5</mn></mrow><mrow><mn>6</mn><mi>t</mi></mrow></msubsup></math></span>, for <span><math><mi>t</mi><mo>⩾</mo><mn>1</mn></math></span>, are the first examples of hypergraphs with exponentially many extremal constructions and positive Turán density.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"175 \",\"pages\":\"Pages 1-28\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000401\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000401","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Non-degenerate hypergraphs with exponentially many extremal constructions
For every integer , denote by the hypergraph on vertex set with hyperedges . We determine for every and sufficiently large n and characterize the extremal -free hypergraphs. In particular, if n satisfies certain divisibility conditions, then the extremal -free hypergraphs are exactly the balanced complete tripartite hypergraphs with additional hyperedges inside each of the three parts in the partition; each part spans a -design. This generalizes earlier work of Frankl and Füredi on the Turán number of .
Our results extend a theory of Erdős and Simonovits about the extremal constructions for certain fixed graphs. In particular, the hypergraphs , for , are the first examples of hypergraphs with exponentially many extremal constructions and positive Turán density.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.