某小型无人机复合材料机翼有限元分析及实验whifftretree测试

Q1 Engineering
Aryandi Marta , Fajar Ari Wandono , Abian Nurrohmad , Riki Ardiansyah , Ilham Bagus Wiranto , Iqbal Reza Alfikri , Aditya Rio Prabowo , Gesang Nugroho
{"title":"某小型无人机复合材料机翼有限元分析及实验whifftretree测试","authors":"Aryandi Marta ,&nbsp;Fajar Ari Wandono ,&nbsp;Abian Nurrohmad ,&nbsp;Riki Ardiansyah ,&nbsp;Ilham Bagus Wiranto ,&nbsp;Iqbal Reza Alfikri ,&nbsp;Aditya Rio Prabowo ,&nbsp;Gesang Nugroho","doi":"10.1016/j.ijlmm.2025.03.004","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive investigation of the structural performance of a small unmanned aerial vehicle (UAV) composite wing, integrating finite element analysis (FEA) and experimental whiffletree testing. The study focuses on a pusher-type UAV with a 2.9-m wingspan and 21 kg maximum takeoff weight. The distributed load from the Schrenk's method was converted into multiple point loads for whiffletree load by using the cantilever beam approach. When subjected to load within the limit load, the observed failure at the upper skin wing near the wing-body joint also complied with the failure results according to the finite element analysis with the Tsai-Wu failure index of 1. Conversely, the deflection comparison between the finite element analysis using whiffletree loads and the actual whiffletree testing showed good agreement, with maximum deflection values of 122 mm and 120 mm, respectively. With a difference of 1.67 % in maximum deflection, the study validates the wing's structural integrity up to the design limit load and identifies failure modes within this limit. This aircraft structure can withstand load factor up to 2.8, making it safe for standard maneuvers during flight operations.</div></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"8 4","pages":"Pages 483-494"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element analysis and experimental whiffletree testing of a small UAV composite wing\",\"authors\":\"Aryandi Marta ,&nbsp;Fajar Ari Wandono ,&nbsp;Abian Nurrohmad ,&nbsp;Riki Ardiansyah ,&nbsp;Ilham Bagus Wiranto ,&nbsp;Iqbal Reza Alfikri ,&nbsp;Aditya Rio Prabowo ,&nbsp;Gesang Nugroho\",\"doi\":\"10.1016/j.ijlmm.2025.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a comprehensive investigation of the structural performance of a small unmanned aerial vehicle (UAV) composite wing, integrating finite element analysis (FEA) and experimental whiffletree testing. The study focuses on a pusher-type UAV with a 2.9-m wingspan and 21 kg maximum takeoff weight. The distributed load from the Schrenk's method was converted into multiple point loads for whiffletree load by using the cantilever beam approach. When subjected to load within the limit load, the observed failure at the upper skin wing near the wing-body joint also complied with the failure results according to the finite element analysis with the Tsai-Wu failure index of 1. Conversely, the deflection comparison between the finite element analysis using whiffletree loads and the actual whiffletree testing showed good agreement, with maximum deflection values of 122 mm and 120 mm, respectively. With a difference of 1.67 % in maximum deflection, the study validates the wing's structural integrity up to the design limit load and identifies failure modes within this limit. This aircraft structure can withstand load factor up to 2.8, making it safe for standard maneuvers during flight operations.</div></div>\",\"PeriodicalId\":52306,\"journal\":{\"name\":\"International Journal of Lightweight Materials and Manufacture\",\"volume\":\"8 4\",\"pages\":\"Pages 483-494\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Lightweight Materials and Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588840425000277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840425000277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

采用有限元分析和实验whiffletree测试相结合的方法,对小型无人机(UAV)复合材料机翼的结构性能进行了综合研究。该研究的重点是一种翼展2.9米、最大起飞重量21公斤的推式无人机。采用悬臂梁法将Schrenk法得到的分布荷载转化为多点荷载,得到whiffletree荷载。当载荷在极限载荷范围内时,近翼身结合处的上蒙皮翼观察到的破坏也符合有限元分析的破坏结果,破坏指数Tsai-Wu为1。相反,使用whiffletree荷载的有限元分析与实际whiffletree试验之间的挠度比较显示出良好的一致性,最大挠度值分别为122 mm和120 mm。在最大挠度差异为1.67%的情况下,该研究验证了机翼在设计极限载荷下的结构完整性,并确定了该极限内的失效模式。这种飞机结构可以承受高达2.8的负载系数,使其在飞行操作期间的标准机动安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite element analysis and experimental whiffletree testing of a small UAV composite wing
This study presents a comprehensive investigation of the structural performance of a small unmanned aerial vehicle (UAV) composite wing, integrating finite element analysis (FEA) and experimental whiffletree testing. The study focuses on a pusher-type UAV with a 2.9-m wingspan and 21 kg maximum takeoff weight. The distributed load from the Schrenk's method was converted into multiple point loads for whiffletree load by using the cantilever beam approach. When subjected to load within the limit load, the observed failure at the upper skin wing near the wing-body joint also complied with the failure results according to the finite element analysis with the Tsai-Wu failure index of 1. Conversely, the deflection comparison between the finite element analysis using whiffletree loads and the actual whiffletree testing showed good agreement, with maximum deflection values of 122 mm and 120 mm, respectively. With a difference of 1.67 % in maximum deflection, the study validates the wing's structural integrity up to the design limit load and identifies failure modes within this limit. This aircraft structure can withstand load factor up to 2.8, making it safe for standard maneuvers during flight operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信