Baochun Luo , Sifan Liu , Lei Zheng , Baiwen Zhang , Yaxin Shang , Tong Shang , Jia Zheng , Binglin Kuang , Wei Zou
{"title":"免疫细胞糖酵解在脑出血继发神经炎症中的作用","authors":"Baochun Luo , Sifan Liu , Lei Zheng , Baiwen Zhang , Yaxin Shang , Tong Shang , Jia Zheng , Binglin Kuang , Wei Zou","doi":"10.1016/j.clim.2025.110543","DOIUrl":null,"url":null,"abstract":"<div><div>Intracerebral hemorrhage (ICH) is the most lethal subtype of stroke, making the effective prevention and treatment of inflammatory secondary injury crucial. Recently, the role of immune cell metabolism in ICH has gained attention, particularly the regulatory mechanisms of glycolytic reprogramming in neuroinflammation. This review explores how glycolysis activation in peripheral immune cells (including neutrophils, macrophages, T cells, and natural killer cells), central immune cells (microglia), and other glial cells (including astrocytes and oligodendrocytes) involved in immune regulation influences the inflammatory response following ICH. We analyze the metabolic shifts in glycolysis within these immune cells, highlighting its dual role in neuroinflammation: glycolysis not only provides rapid energy to immune cells, which can either promote or inhibit inflammation, but lactate—a glycolysis byproduct—can modulate inflammatory damage by altering pH and immune cell function. Furthermore, we explore the therapeutic potential of targeting glycolysis in immune cells for neuroinflammation treatment. A deeper understanding of the glycolytic mechanism in ICH may facilitate the development of clinical therapeutic strategies targeting metabolism.</div></div>","PeriodicalId":10392,"journal":{"name":"Clinical immunology","volume":"279 ","pages":"Article 110543"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of immune cells glycolysis in neuroinflammation secondary to intracerebral hemorrhage\",\"authors\":\"Baochun Luo , Sifan Liu , Lei Zheng , Baiwen Zhang , Yaxin Shang , Tong Shang , Jia Zheng , Binglin Kuang , Wei Zou\",\"doi\":\"10.1016/j.clim.2025.110543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intracerebral hemorrhage (ICH) is the most lethal subtype of stroke, making the effective prevention and treatment of inflammatory secondary injury crucial. Recently, the role of immune cell metabolism in ICH has gained attention, particularly the regulatory mechanisms of glycolytic reprogramming in neuroinflammation. This review explores how glycolysis activation in peripheral immune cells (including neutrophils, macrophages, T cells, and natural killer cells), central immune cells (microglia), and other glial cells (including astrocytes and oligodendrocytes) involved in immune regulation influences the inflammatory response following ICH. We analyze the metabolic shifts in glycolysis within these immune cells, highlighting its dual role in neuroinflammation: glycolysis not only provides rapid energy to immune cells, which can either promote or inhibit inflammation, but lactate—a glycolysis byproduct—can modulate inflammatory damage by altering pH and immune cell function. Furthermore, we explore the therapeutic potential of targeting glycolysis in immune cells for neuroinflammation treatment. A deeper understanding of the glycolytic mechanism in ICH may facilitate the development of clinical therapeutic strategies targeting metabolism.</div></div>\",\"PeriodicalId\":10392,\"journal\":{\"name\":\"Clinical immunology\",\"volume\":\"279 \",\"pages\":\"Article 110543\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1521661625001184\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1521661625001184","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The role of immune cells glycolysis in neuroinflammation secondary to intracerebral hemorrhage
Intracerebral hemorrhage (ICH) is the most lethal subtype of stroke, making the effective prevention and treatment of inflammatory secondary injury crucial. Recently, the role of immune cell metabolism in ICH has gained attention, particularly the regulatory mechanisms of glycolytic reprogramming in neuroinflammation. This review explores how glycolysis activation in peripheral immune cells (including neutrophils, macrophages, T cells, and natural killer cells), central immune cells (microglia), and other glial cells (including astrocytes and oligodendrocytes) involved in immune regulation influences the inflammatory response following ICH. We analyze the metabolic shifts in glycolysis within these immune cells, highlighting its dual role in neuroinflammation: glycolysis not only provides rapid energy to immune cells, which can either promote or inhibit inflammation, but lactate—a glycolysis byproduct—can modulate inflammatory damage by altering pH and immune cell function. Furthermore, we explore the therapeutic potential of targeting glycolysis in immune cells for neuroinflammation treatment. A deeper understanding of the glycolytic mechanism in ICH may facilitate the development of clinical therapeutic strategies targeting metabolism.
期刊介绍:
Clinical Immunology publishes original research delving into the molecular and cellular foundations of immunological diseases. Additionally, the journal includes reviews covering timely subjects in basic immunology, along with case reports and letters to the editor.