Ni/Al共掺杂诱导FeO6八面体畸变激活Ca2Fe2O5中的晶格氧,增强化学环制氢

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yile Zou, Hui Liu, Ruizhi Li, Jing Liu, Chenyao Wu, Zhao Sun and Yaning Zhang
{"title":"Ni/Al共掺杂诱导FeO6八面体畸变激活Ca2Fe2O5中的晶格氧,增强化学环制氢","authors":"Yile Zou, Hui Liu, Ruizhi Li, Jing Liu, Chenyao Wu, Zhao Sun and Yaning Zhang","doi":"10.1039/D5TA02086G","DOIUrl":null,"url":null,"abstract":"<p >Chemical looping steam methane reforming (CLSMR) is an efficient technology for syngas and hydrogen production, but its progress is hindered by catalyst activity and stability limitations. This study develops highly reactive Ca<small><sub>2</sub></small>Ni<small><sub><em>x</em></sub></small>Al<small><sub><em>y</em></sub></small>Fe<small><sub>2−<em>x</em>−<em>y</em></sub></small>O<small><sub>5</sub></small> oxygen carriers, with Ni and Al doping significantly enhancing performance. At 850 °C, the Ca<small><sub>2</sub></small>Ni<small><sub>0.1</sub></small>Al<small><sub>0.2</sub></small>Fe<small><sub>1.7</sub></small>O<small><sub>5</sub></small> carrier achieves excellent results: CO selectivity of 89.75%, syngas yield of 6.18 mmol g<small><sup>−1</sup></small>, and pure hydrogen yield of 4.40 mmol g<small><sup>−1</sup></small> during the steam oxidation stage, with no carbon deposition and stable performance over 15 cycles. Ni doping enhances the catalytic activity, whereas Al doping promotes the formation of oxygen vacancies. Their synergistic effect enhances active site density and oxygen transport, boosting overall catalytic efficiency and enabling high-yield syngas and hydrogen co-production. Density functional theory (DFT) calculations indicate that the upward shift of the O-2p band center reflects enhanced reactivity of lattice oxygen, while adjustments in the Fe–O–Fe bond angles within FeO<small><sub>4</sub></small> and FeO<small><sub>6</sub></small> groups further optimize the migration pathways of oxygen ions. Co-doping with Ni and Al reduces the oxygen vacancy formation energy of the Ca<small><sub>2</sub></small>Fe<small><sub>2</sub></small>O<small><sub>5</sub></small> oxygen carrier from 3.35 eV to 2.04 eV, and decreases the oxygen migration energy from 1.36 eV to 1.02 eV, demonstrating its facilitation in oxygen mobility and migration. Additionally, the synergistic interaction between oxygen vacancies and Brønsted acid sites further enhances reaction efficiency.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 27","pages":" 21601-21614"},"PeriodicalIF":9.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ni/Al co-doping induces FeO6 octahedral distortion to activate lattice oxygen in Ca2Fe2O5 for enhanced chemical looping hydrogen generation†\",\"authors\":\"Yile Zou, Hui Liu, Ruizhi Li, Jing Liu, Chenyao Wu, Zhao Sun and Yaning Zhang\",\"doi\":\"10.1039/D5TA02086G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Chemical looping steam methane reforming (CLSMR) is an efficient technology for syngas and hydrogen production, but its progress is hindered by catalyst activity and stability limitations. This study develops highly reactive Ca<small><sub>2</sub></small>Ni<small><sub><em>x</em></sub></small>Al<small><sub><em>y</em></sub></small>Fe<small><sub>2−<em>x</em>−<em>y</em></sub></small>O<small><sub>5</sub></small> oxygen carriers, with Ni and Al doping significantly enhancing performance. At 850 °C, the Ca<small><sub>2</sub></small>Ni<small><sub>0.1</sub></small>Al<small><sub>0.2</sub></small>Fe<small><sub>1.7</sub></small>O<small><sub>5</sub></small> carrier achieves excellent results: CO selectivity of 89.75%, syngas yield of 6.18 mmol g<small><sup>−1</sup></small>, and pure hydrogen yield of 4.40 mmol g<small><sup>−1</sup></small> during the steam oxidation stage, with no carbon deposition and stable performance over 15 cycles. Ni doping enhances the catalytic activity, whereas Al doping promotes the formation of oxygen vacancies. Their synergistic effect enhances active site density and oxygen transport, boosting overall catalytic efficiency and enabling high-yield syngas and hydrogen co-production. Density functional theory (DFT) calculations indicate that the upward shift of the O-2p band center reflects enhanced reactivity of lattice oxygen, while adjustments in the Fe–O–Fe bond angles within FeO<small><sub>4</sub></small> and FeO<small><sub>6</sub></small> groups further optimize the migration pathways of oxygen ions. Co-doping with Ni and Al reduces the oxygen vacancy formation energy of the Ca<small><sub>2</sub></small>Fe<small><sub>2</sub></small>O<small><sub>5</sub></small> oxygen carrier from 3.35 eV to 2.04 eV, and decreases the oxygen migration energy from 1.36 eV to 1.02 eV, demonstrating its facilitation in oxygen mobility and migration. Additionally, the synergistic interaction between oxygen vacancies and Brønsted acid sites further enhances reaction efficiency.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 27\",\"pages\":\" 21601-21614\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02086g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02086g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

化学循环蒸汽甲烷重整(CLSMR)是一种高效的合成气制氢技术,但其发展受到催化剂活性和稳定性的限制。本研究开发了高活性的Ca2NixAlyFe2−x−yO5氧载体,Ni和Al的掺杂显著提高了其性能。在850℃条件下,Ca2Ni0.1Al0.2Fe1.7O5载体在蒸汽氧化阶段的CO选择性为89.75%,合成气产率为6.18 mmol g−1,纯氢产率为4.40 mmol g−1,无碳沉积,循环15次后性能稳定。Ni掺杂提高了催化活性,Al掺杂促进了氧空位的形成。它们的协同效应增强了活性位点密度和氧运输,提高了整体催化效率,实现了高产合成气和氢气的联合生产。密度泛函理论(DFT)计算表明,O-2p带中心的上移反映了晶格氧的反应性增强,而FeO4和FeO6基团内Fe-O-Fe键角的调整进一步优化了氧离子的迁移途径。与Ni和Al共掺杂使Ca2Fe2O5氧载体的氧空位形成能从3.35 eV降低到2.04 eV,氧迁移能从1.36 eV降低到1.02 eV,表明其对氧迁移和迁移具有促进作用。此外,氧空位与Brønsted酸位之间的协同作用进一步提高了反应效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ni/Al co-doping induces FeO6 octahedral distortion to activate lattice oxygen in Ca2Fe2O5 for enhanced chemical looping hydrogen generation†

Ni/Al co-doping induces FeO6 octahedral distortion to activate lattice oxygen in Ca2Fe2O5 for enhanced chemical looping hydrogen generation†

Ni/Al co-doping induces FeO6 octahedral distortion to activate lattice oxygen in Ca2Fe2O5 for enhanced chemical looping hydrogen generation†

Chemical looping steam methane reforming (CLSMR) is an efficient technology for syngas and hydrogen production, but its progress is hindered by catalyst activity and stability limitations. This study develops highly reactive Ca2NixAlyFe2−xyO5 oxygen carriers, with Ni and Al doping significantly enhancing performance. At 850 °C, the Ca2Ni0.1Al0.2Fe1.7O5 carrier achieves excellent results: CO selectivity of 89.75%, syngas yield of 6.18 mmol g−1, and pure hydrogen yield of 4.40 mmol g−1 during the steam oxidation stage, with no carbon deposition and stable performance over 15 cycles. Ni doping enhances the catalytic activity, whereas Al doping promotes the formation of oxygen vacancies. Their synergistic effect enhances active site density and oxygen transport, boosting overall catalytic efficiency and enabling high-yield syngas and hydrogen co-production. Density functional theory (DFT) calculations indicate that the upward shift of the O-2p band center reflects enhanced reactivity of lattice oxygen, while adjustments in the Fe–O–Fe bond angles within FeO4 and FeO6 groups further optimize the migration pathways of oxygen ions. Co-doping with Ni and Al reduces the oxygen vacancy formation energy of the Ca2Fe2O5 oxygen carrier from 3.35 eV to 2.04 eV, and decreases the oxygen migration energy from 1.36 eV to 1.02 eV, demonstrating its facilitation in oxygen mobility and migration. Additionally, the synergistic interaction between oxygen vacancies and Brønsted acid sites further enhances reaction efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信