纳米花介导的镓-原卟啉IX复合物在巨噬细胞靶向治疗中的细胞内抗菌和免疫调节作用

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-13 DOI:10.1021/acsnano.5c02488
Yin Zhou, Yutong Chen, Wentao Zhao, Jiafeng Wang, Yi Chen, Haobo Wen, Yiyan He, Ning Li, Hongli Mao, Yuwen Cui, Zhongwei Gu
{"title":"纳米花介导的镓-原卟啉IX复合物在巨噬细胞靶向治疗中的细胞内抗菌和免疫调节作用","authors":"Yin Zhou, Yutong Chen, Wentao Zhao, Jiafeng Wang, Yi Chen, Haobo Wen, Yiyan He, Ning Li, Hongli Mao, Yuwen Cui, Zhongwei Gu","doi":"10.1021/acsnano.5c02488","DOIUrl":null,"url":null,"abstract":"Intracellular bacterial infections are challenging due to immune evasion and antibiotic resistance, especially within macrophages harboring dormant bacteria. Here, a synergistic antibacterial strategy is presented using the PG3M@GaPP nanoflowers, which integrate immune modulation, iron metabolism disruption, and antibacterial photodynamic therapy (APDT) to eliminate intracellular bacteria. This nanoflower encapsulates a gallium–protoporphyrin IX complex (GaPP) within mannose-functionalized poly-<span>l</span>-lysine dendrimers (PG3M), enabling targeted delivery to macrophages via mannose receptor recognition. PG3M@GaPP promotes macrophage polarization to the anti-inflammatory M2 phenotype, enhancing immune modulation and bacterial uptake. The platform’s positive charge facilitates endosomal escape, releasing GaPP in the acidic intracellular environment, where free iron ions compete with gallium ions to form the iron–protoporphyrin IX complex (FePP). This disrupts the gallium/iron ion balance, enhancing the Trojan horse effect of gallium ions and inducing iron metabolism-dependent bacterial death. Additionally, laser activation of GaPP generates reactive oxygen species (ROS), further amplifying bacterial killing via APDT. <i>In vitro</i> and <i>in vivo</i> experiments show that PG3M@GaPP outperforms both free GaPP and commercial antibiotics in eliminating intracellular bacteria. These nanoflowers offers an alternative, nonantibiotic approach to combat intracellular infections, addressing drug resistance and providing a promising platform for antibacterial therapies.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"8 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoflower-Mediated Gallium-Protoporphyrin IX Complex for Intracellular Antibacterial and Immunomodulatory Effects in Macrophage-Targeted Therapy\",\"authors\":\"Yin Zhou, Yutong Chen, Wentao Zhao, Jiafeng Wang, Yi Chen, Haobo Wen, Yiyan He, Ning Li, Hongli Mao, Yuwen Cui, Zhongwei Gu\",\"doi\":\"10.1021/acsnano.5c02488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intracellular bacterial infections are challenging due to immune evasion and antibiotic resistance, especially within macrophages harboring dormant bacteria. Here, a synergistic antibacterial strategy is presented using the PG3M@GaPP nanoflowers, which integrate immune modulation, iron metabolism disruption, and antibacterial photodynamic therapy (APDT) to eliminate intracellular bacteria. This nanoflower encapsulates a gallium–protoporphyrin IX complex (GaPP) within mannose-functionalized poly-<span>l</span>-lysine dendrimers (PG3M), enabling targeted delivery to macrophages via mannose receptor recognition. PG3M@GaPP promotes macrophage polarization to the anti-inflammatory M2 phenotype, enhancing immune modulation and bacterial uptake. The platform’s positive charge facilitates endosomal escape, releasing GaPP in the acidic intracellular environment, where free iron ions compete with gallium ions to form the iron–protoporphyrin IX complex (FePP). This disrupts the gallium/iron ion balance, enhancing the Trojan horse effect of gallium ions and inducing iron metabolism-dependent bacterial death. Additionally, laser activation of GaPP generates reactive oxygen species (ROS), further amplifying bacterial killing via APDT. <i>In vitro</i> and <i>in vivo</i> experiments show that PG3M@GaPP outperforms both free GaPP and commercial antibiotics in eliminating intracellular bacteria. These nanoflowers offers an alternative, nonantibiotic approach to combat intracellular infections, addressing drug resistance and providing a promising platform for antibacterial therapies.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c02488\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c02488","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细胞内细菌感染是具有挑战性的,由于免疫逃避和抗生素耐药性,特别是巨噬细胞内窝藏休眠细菌。在这里,使用PG3M@GaPP纳米花提出了一种协同抗菌策略,它整合了免疫调节、铁代谢破坏和抗菌光动力疗法(APDT)来消除细胞内细菌。这种纳米花在甘露糖功能化的聚赖氨酸树状大分子(PG3M)中封装了镓-原卟啉IX复合物(GaPP),能够通过甘露糖受体识别靶向递送到巨噬细胞。PG3M@GaPP促进巨噬细胞极化到抗炎M2表型,增强免疫调节和细菌摄取。该平台的正电荷有助于内体逃逸,在酸性细胞内环境中释放GaPP,在酸性细胞内环境中,游离铁离子与镓离子竞争形成铁原卟啉IX复合物(FePP)。这破坏了镓/铁离子平衡,增强了镓离子的特洛伊木马效应,并诱导铁代谢依赖的细菌死亡。此外,激光激活GaPP会产生活性氧(ROS),进一步放大APDT对细菌的杀伤作用。体外和体内实验表明,PG3M@GaPP在清除细胞内细菌方面优于游离GaPP和商用抗生素。这些纳米花提供了一种替代的非抗生素方法来对抗细胞内感染,解决耐药性问题,并为抗菌治疗提供了一个有希望的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoflower-Mediated Gallium-Protoporphyrin IX Complex for Intracellular Antibacterial and Immunomodulatory Effects in Macrophage-Targeted Therapy

Nanoflower-Mediated Gallium-Protoporphyrin IX Complex for Intracellular Antibacterial and Immunomodulatory Effects in Macrophage-Targeted Therapy
Intracellular bacterial infections are challenging due to immune evasion and antibiotic resistance, especially within macrophages harboring dormant bacteria. Here, a synergistic antibacterial strategy is presented using the PG3M@GaPP nanoflowers, which integrate immune modulation, iron metabolism disruption, and antibacterial photodynamic therapy (APDT) to eliminate intracellular bacteria. This nanoflower encapsulates a gallium–protoporphyrin IX complex (GaPP) within mannose-functionalized poly-l-lysine dendrimers (PG3M), enabling targeted delivery to macrophages via mannose receptor recognition. PG3M@GaPP promotes macrophage polarization to the anti-inflammatory M2 phenotype, enhancing immune modulation and bacterial uptake. The platform’s positive charge facilitates endosomal escape, releasing GaPP in the acidic intracellular environment, where free iron ions compete with gallium ions to form the iron–protoporphyrin IX complex (FePP). This disrupts the gallium/iron ion balance, enhancing the Trojan horse effect of gallium ions and inducing iron metabolism-dependent bacterial death. Additionally, laser activation of GaPP generates reactive oxygen species (ROS), further amplifying bacterial killing via APDT. In vitro and in vivo experiments show that PG3M@GaPP outperforms both free GaPP and commercial antibiotics in eliminating intracellular bacteria. These nanoflowers offers an alternative, nonantibiotic approach to combat intracellular infections, addressing drug resistance and providing a promising platform for antibacterial therapies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信