碳纳米管有源矩阵背板驱动的微型led微显示器

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-13 DOI:10.1021/acsnano.5c00672
Yi Li, Yan Guo, Jin Li, Meiqi Xi, Lan Bai, Jianfeng Zhang, Shu Li, Xuehao Zhu, Yinghua He, Bingyu He, Xingxing Chen, Yuting Zhang, Yujia Gong, Zilun Yin, Jiahao Kang, Lian-Mao Peng, Rong Zhang, Yugang Zhou*, Yu Cao* and Xuelei Liang*, 
{"title":"碳纳米管有源矩阵背板驱动的微型led微显示器","authors":"Yi Li,&nbsp;Yan Guo,&nbsp;Jin Li,&nbsp;Meiqi Xi,&nbsp;Lan Bai,&nbsp;Jianfeng Zhang,&nbsp;Shu Li,&nbsp;Xuehao Zhu,&nbsp;Yinghua He,&nbsp;Bingyu He,&nbsp;Xingxing Chen,&nbsp;Yuting Zhang,&nbsp;Yujia Gong,&nbsp;Zilun Yin,&nbsp;Jiahao Kang,&nbsp;Lian-Mao Peng,&nbsp;Rong Zhang,&nbsp;Yugang Zhou*,&nbsp;Yu Cao* and Xuelei Liang*,&nbsp;","doi":"10.1021/acsnano.5c00672","DOIUrl":null,"url":null,"abstract":"<p >Micro-light-emitting-diodes (μLEDs) are poised to revolutionize flat-panel display (FPD) technology with their exceptional brightness, contrast ratio, energy efficiency, and ultrahigh resolutions, making them indispensable for augmented reality (AR) and virtual reality (VR) microdisplays. However, the realization of high pixel-per-inch (PPI) μLED microdisplays demands advanced thin-film transistor (TFT) backplanes with robust driving capabilities. Presently, single-crystalline silicon CMOS dominates the industry for this application, but its nontransparent nature, wafer size limitations, and high fabrication cost restrict its scalability. Alternative technologies, including low-temperature polycrystalline silicon (LTPS) and metal oxide semiconductors, fail to deliver the required small device dimensions, driving performance, and stability. Two-dimensional transition metal dichalcogenides (TMDs) have shown potential, but their integration has faced challenges, such as complex transfer processes and limited scalability, resulting in only semiactive-matrix display demonstrations. Here, we present a prototype active-matrix (AM) μLED microdisplay driven by optimized carbon nanotube (CNT) TFTs with Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> gate dielectric stack and Y<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>/polyimide passivation layers. Our CNT TFTs with a channel length (<i>L</i><sub>ch</sub>) of 3 μm achieve a driving current of ∼10 μA/μm and a mobility of ∼27 cm<sup>2</sup>/(V·s), while scaling <i>L</i><sub>ch</sub> to 0.5 μm enhances the driving current to ∼80 μA/μm and a mobility of ∼40 cm<sup>2</sup>/(V·s), surpassing most previously reported CNT TFTs for AM displays and enabling AM-μLED microdisplays with a PPI up to 3400. Moreover, a heterogeneous integration process ultilizing flip-chip eutectic bonding was developed to assemble μLED arrays onto CNT TFT backplanes, achieving a yield of ∼100% aided by the PI layer. Furthermore, CNT TFT-based two-transistor, one-capacitor (2T1C) pixel-driving circuits and peripheral control circuits were designed to support both pulse amplitude modulation (PAM) and pulse width modulation (PWM) of μLED operation. These advancements culminate in a 32 × 32-pixel AM-μLED prototype microdisplay with a PPI of 357, capable of dynamic image and video display. Our work demonstrates CNT TFTs as a viable and scalable solution for next-generation μLED microdisplays.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 25","pages":"22837–22848"},"PeriodicalIF":16.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-LED Microdisplays Driven by Carbon Nanotube Active-Matrix Backplanes\",\"authors\":\"Yi Li,&nbsp;Yan Guo,&nbsp;Jin Li,&nbsp;Meiqi Xi,&nbsp;Lan Bai,&nbsp;Jianfeng Zhang,&nbsp;Shu Li,&nbsp;Xuehao Zhu,&nbsp;Yinghua He,&nbsp;Bingyu He,&nbsp;Xingxing Chen,&nbsp;Yuting Zhang,&nbsp;Yujia Gong,&nbsp;Zilun Yin,&nbsp;Jiahao Kang,&nbsp;Lian-Mao Peng,&nbsp;Rong Zhang,&nbsp;Yugang Zhou*,&nbsp;Yu Cao* and Xuelei Liang*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c00672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Micro-light-emitting-diodes (μLEDs) are poised to revolutionize flat-panel display (FPD) technology with their exceptional brightness, contrast ratio, energy efficiency, and ultrahigh resolutions, making them indispensable for augmented reality (AR) and virtual reality (VR) microdisplays. However, the realization of high pixel-per-inch (PPI) μLED microdisplays demands advanced thin-film transistor (TFT) backplanes with robust driving capabilities. Presently, single-crystalline silicon CMOS dominates the industry for this application, but its nontransparent nature, wafer size limitations, and high fabrication cost restrict its scalability. Alternative technologies, including low-temperature polycrystalline silicon (LTPS) and metal oxide semiconductors, fail to deliver the required small device dimensions, driving performance, and stability. Two-dimensional transition metal dichalcogenides (TMDs) have shown potential, but their integration has faced challenges, such as complex transfer processes and limited scalability, resulting in only semiactive-matrix display demonstrations. Here, we present a prototype active-matrix (AM) μLED microdisplay driven by optimized carbon nanotube (CNT) TFTs with Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> gate dielectric stack and Y<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>/polyimide passivation layers. Our CNT TFTs with a channel length (<i>L</i><sub>ch</sub>) of 3 μm achieve a driving current of ∼10 μA/μm and a mobility of ∼27 cm<sup>2</sup>/(V·s), while scaling <i>L</i><sub>ch</sub> to 0.5 μm enhances the driving current to ∼80 μA/μm and a mobility of ∼40 cm<sup>2</sup>/(V·s), surpassing most previously reported CNT TFTs for AM displays and enabling AM-μLED microdisplays with a PPI up to 3400. Moreover, a heterogeneous integration process ultilizing flip-chip eutectic bonding was developed to assemble μLED arrays onto CNT TFT backplanes, achieving a yield of ∼100% aided by the PI layer. Furthermore, CNT TFT-based two-transistor, one-capacitor (2T1C) pixel-driving circuits and peripheral control circuits were designed to support both pulse amplitude modulation (PAM) and pulse width modulation (PWM) of μLED operation. These advancements culminate in a 32 × 32-pixel AM-μLED prototype microdisplay with a PPI of 357, capable of dynamic image and video display. Our work demonstrates CNT TFTs as a viable and scalable solution for next-generation μLED microdisplays.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 25\",\"pages\":\"22837–22848\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c00672\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c00672","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

微型发光二极管(μ led)凭借其卓越的亮度、对比度、能效和超高分辨率,有望彻底改变平板显示器(FPD)技术,使其成为增强现实(AR)和虚拟现实(VR)微显示器不可或缺的产品。然而,实现高像素/英寸(PPI) μLED微显示器需要具有强大驱动能力的先进薄膜晶体管(TFT)背板。目前,单晶硅CMOS在该应用领域占据主导地位,但其不透明的性质、晶圆尺寸的限制以及高昂的制造成本限制了其可扩展性。包括低温多晶硅(LTPS)和金属氧化物半导体在内的替代技术无法提供所需的小器件尺寸、驱动性能和稳定性。二维过渡金属二硫族化物(TMDs)显示出潜力,但其集成面临挑战,如复杂的转移过程和有限的可扩展性,导致只有半主动矩阵显示演示。在这里,我们提出了一个原型有源矩阵(AM) μLED微显示器,由优化的碳纳米管(CNT) tft驱动,具有Al2O3/SiO2栅极介电层和Y2O3/SiO2/聚酰亚胺钝化层。我们的通道长度(Lch)为3 μm的CNT tft实现了驱动电流为~ 10 μA/μm和迁移率为~ 27 cm2/(V·s),而将Lch缩放到0.5 μm可将驱动电流提高到~ 80 μA/μm和迁移率为~ 40 cm2/(V·s),超过了之前报道的大多数用于AM显示器的CNT tft,并使AM-μLED微显示器的PPI高达3400。此外,还开发了一种利用倒装共晶键的异构集成工艺,将μLED阵列组装到碳纳米管TFT背板上,在PI层的帮助下实现了~ 100%的良率。此外,设计了基于碳纳米管tft的双晶体管单电容(2T1C)像素驱动电路和外围控制电路,以支持μLED的脉冲幅度调制(PAM)和脉宽调制(PWM)工作。这些进步最终实现了一个32 × 32像素的AM-μLED原型微显示器,PPI为357,能够动态显示图像和视频。我们的工作证明了碳纳米管tft是下一代μLED微显示器的可行和可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Micro-LED Microdisplays Driven by Carbon Nanotube Active-Matrix Backplanes

Micro-LED Microdisplays Driven by Carbon Nanotube Active-Matrix Backplanes

Micro-LED Microdisplays Driven by Carbon Nanotube Active-Matrix Backplanes

Micro-light-emitting-diodes (μLEDs) are poised to revolutionize flat-panel display (FPD) technology with their exceptional brightness, contrast ratio, energy efficiency, and ultrahigh resolutions, making them indispensable for augmented reality (AR) and virtual reality (VR) microdisplays. However, the realization of high pixel-per-inch (PPI) μLED microdisplays demands advanced thin-film transistor (TFT) backplanes with robust driving capabilities. Presently, single-crystalline silicon CMOS dominates the industry for this application, but its nontransparent nature, wafer size limitations, and high fabrication cost restrict its scalability. Alternative technologies, including low-temperature polycrystalline silicon (LTPS) and metal oxide semiconductors, fail to deliver the required small device dimensions, driving performance, and stability. Two-dimensional transition metal dichalcogenides (TMDs) have shown potential, but their integration has faced challenges, such as complex transfer processes and limited scalability, resulting in only semiactive-matrix display demonstrations. Here, we present a prototype active-matrix (AM) μLED microdisplay driven by optimized carbon nanotube (CNT) TFTs with Al2O3/SiO2 gate dielectric stack and Y2O3/SiO2/polyimide passivation layers. Our CNT TFTs with a channel length (Lch) of 3 μm achieve a driving current of ∼10 μA/μm and a mobility of ∼27 cm2/(V·s), while scaling Lch to 0.5 μm enhances the driving current to ∼80 μA/μm and a mobility of ∼40 cm2/(V·s), surpassing most previously reported CNT TFTs for AM displays and enabling AM-μLED microdisplays with a PPI up to 3400. Moreover, a heterogeneous integration process ultilizing flip-chip eutectic bonding was developed to assemble μLED arrays onto CNT TFT backplanes, achieving a yield of ∼100% aided by the PI layer. Furthermore, CNT TFT-based two-transistor, one-capacitor (2T1C) pixel-driving circuits and peripheral control circuits were designed to support both pulse amplitude modulation (PAM) and pulse width modulation (PWM) of μLED operation. These advancements culminate in a 32 × 32-pixel AM-μLED prototype microdisplay with a PPI of 357, capable of dynamic image and video display. Our work demonstrates CNT TFTs as a viable and scalable solution for next-generation μLED microdisplays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信