AbEpiTope-1.0:利用AlphaFold和逆折叠改进抗体靶标预测

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Joakim Nøddeskov Clifford, Eve Richardson, Bjoern Peters, Morten Nielsen
{"title":"AbEpiTope-1.0:利用AlphaFold和逆折叠改进抗体靶标预测","authors":"Joakim Nøddeskov Clifford,&nbsp;Eve Richardson,&nbsp;Bjoern Peters,&nbsp;Morten Nielsen","doi":"10.1126/sciadv.adu1823","DOIUrl":null,"url":null,"abstract":"<div >B cell epitope prediction tools are crucial for designing vaccines and disease diagnostics. However, predicting which antigens a specific antibody binds to and their exact binding sites (epitopes) remains challenging. Here, we present AbEpiTope-1.0, a tool for antibody-specific B cell epitope prediction, using AlphaFold for structural modeling and inverse folding for machine learning models. On a dataset of 1730 antibody-antigen complexes, AbEpiTope-1.0 outperforms AlphaFold in predicting modeled antibody-antigen interface accuracy. By creating swapped antibody-antigen complex structures for each antibody-antigen complex using incorrect antibodies, we show that predicted accuracies are sensitive to antibody input. Furthermore, a model variant optimized for antibody target prediction—differentiating true from swapped complexes—achieved an accuracy of 61.21% in correctly identifying antibody-antigen pairs. The tool evaluates hundreds of structures in minutes, providing researchers with a resource for screening antibodies targeting specific antigens. AbEpiTope-1.0 is freely available as a web server and software.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 24","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu1823","citationCount":"0","resultStr":"{\"title\":\"AbEpiTope-1.0: Improved antibody target prediction by use of AlphaFold and inverse folding\",\"authors\":\"Joakim Nøddeskov Clifford,&nbsp;Eve Richardson,&nbsp;Bjoern Peters,&nbsp;Morten Nielsen\",\"doi\":\"10.1126/sciadv.adu1823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >B cell epitope prediction tools are crucial for designing vaccines and disease diagnostics. However, predicting which antigens a specific antibody binds to and their exact binding sites (epitopes) remains challenging. Here, we present AbEpiTope-1.0, a tool for antibody-specific B cell epitope prediction, using AlphaFold for structural modeling and inverse folding for machine learning models. On a dataset of 1730 antibody-antigen complexes, AbEpiTope-1.0 outperforms AlphaFold in predicting modeled antibody-antigen interface accuracy. By creating swapped antibody-antigen complex structures for each antibody-antigen complex using incorrect antibodies, we show that predicted accuracies are sensitive to antibody input. Furthermore, a model variant optimized for antibody target prediction—differentiating true from swapped complexes—achieved an accuracy of 61.21% in correctly identifying antibody-antigen pairs. The tool evaluates hundreds of structures in minutes, providing researchers with a resource for screening antibodies targeting specific antigens. AbEpiTope-1.0 is freely available as a web server and software.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 24\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu1823\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu1823\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu1823","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

B细胞表位预测工具对于设计疫苗和疾病诊断至关重要。然而,预测特定抗体结合的抗原及其确切结合位点(表位)仍然具有挑战性。在这里,我们提出AbEpiTope-1.0,一个抗体特异性B细胞表位预测工具,使用AlphaFold进行结构建模和机器学习模型的逆折叠。在1730个抗体-抗原复合物的数据集上,AbEpiTope-1.0在预测模型抗体-抗原界面准确性方面优于AlphaFold。通过使用不正确的抗体为每个抗体-抗原复合物创建交换的抗体-抗原复合物结构,我们表明预测的准确性对抗体输入很敏感。此外,优化的抗体靶标预测模型变体-区分交换络合物-在正确识别抗体-抗原对方面达到61.21%的准确性。该工具在几分钟内评估数百个结构,为研究人员提供了筛选针对特定抗原的抗体的资源。AbEpiTope-1.0是免费的web服务器和软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AbEpiTope-1.0: Improved antibody target prediction by use of AlphaFold and inverse folding
B cell epitope prediction tools are crucial for designing vaccines and disease diagnostics. However, predicting which antigens a specific antibody binds to and their exact binding sites (epitopes) remains challenging. Here, we present AbEpiTope-1.0, a tool for antibody-specific B cell epitope prediction, using AlphaFold for structural modeling and inverse folding for machine learning models. On a dataset of 1730 antibody-antigen complexes, AbEpiTope-1.0 outperforms AlphaFold in predicting modeled antibody-antigen interface accuracy. By creating swapped antibody-antigen complex structures for each antibody-antigen complex using incorrect antibodies, we show that predicted accuracies are sensitive to antibody input. Furthermore, a model variant optimized for antibody target prediction—differentiating true from swapped complexes—achieved an accuracy of 61.21% in correctly identifying antibody-antigen pairs. The tool evaluates hundreds of structures in minutes, providing researchers with a resource for screening antibodies targeting specific antigens. AbEpiTope-1.0 is freely available as a web server and software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信