{"title":"同一阶型的可解和不可解有限群","authors":"Paweł Piwek","doi":"10.2140/ant.2025.19.1663","DOIUrl":null,"url":null,"abstract":"<p>We construct two groups of size <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mn>2</mn></mrow><mrow><mn>3</mn><mn>6</mn><mn>5</mn></mrow></msup>\n<mo>⋅</mo> <msup><mrow><mn>3</mn></mrow><mrow><mn>1</mn><mn>0</mn><mn>5</mn></mrow></msup>\n<mo>⋅</mo> <msup><mrow><mn>7</mn></mrow><mrow><mn>1</mn><mn>0</mn><mn>4</mn></mrow></msup></math>: a solvable group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> and a nonsolvable group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>H</mi></math> such that for every integer <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> the groups have the same number of elements of order <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>. This answers a question posed in 1987 by John G. Thompson.</p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"609 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvable and nonsolvable finite groups of the same order type\",\"authors\":\"Paweł Piwek\",\"doi\":\"10.2140/ant.2025.19.1663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct two groups of size <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mn>2</mn></mrow><mrow><mn>3</mn><mn>6</mn><mn>5</mn></mrow></msup>\\n<mo>⋅</mo> <msup><mrow><mn>3</mn></mrow><mrow><mn>1</mn><mn>0</mn><mn>5</mn></mrow></msup>\\n<mo>⋅</mo> <msup><mrow><mn>7</mn></mrow><mrow><mn>1</mn><mn>0</mn><mn>4</mn></mrow></msup></math>: a solvable group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi></math> and a nonsolvable group <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>H</mi></math> such that for every integer <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math> the groups have the same number of elements of order <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math>. This answers a question posed in 1987 by John G. Thompson.</p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"609 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.1663\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1663","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们构造了两个大小为2365⋅3105⋅7104的群:一个可解群G和一个不可解群H,使得对于每一个整数n,这两个群有相同数量的n阶元素。这回答了John G. Thompson在1987年提出的一个问题。
Solvable and nonsolvable finite groups of the same order type
We construct two groups of size : a solvable group and a nonsolvable group such that for every integer the groups have the same number of elements of order . This answers a question posed in 1987 by John G. Thompson.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.