{"title":"关于有限域上曲线的最大正交性","authors":"Xander Faber, Jon Grantham, Everett W. Howe","doi":"10.2140/ant.2025.19.1637","DOIUrl":null,"url":null,"abstract":"<p>The gonality of a smooth geometrically connected curve over a field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> is the smallest degree of a nonconstant <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-morphism from the curve to the projective line. In general, the gonality of a curve of genus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi>\n<mo>≥</mo> <mn>2</mn></math> is at most <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi>g</mi>\n<mo>−</mo> <mn>2</mn></math>. Over finite fields, a result of F. K. Schmidt from the 1930s can be used to prove that the gonality is at most <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi>\n<mo>+</mo> <mn>1</mn></math>. Via a mixture of geometry and computation, we improve this bound: for a curve of genus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi>\n<mo>≥</mo> <mn>5</mn></math> over a finite field, the gonality is at most <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi></math>. For genus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi>\n<mo>=</mo> <mn>3</mn></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi>\n<mo>=</mo> <mn>4</mn></math>, the same result holds with exactly <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mn>1</mn><mn>7</mn></math> exceptions: there are two curves of genus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn></math> and gonality <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>5</mn></math>, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mn>1</mn><mn>5</mn></math> curves of genus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>3</mn></math> and gonality <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn></math>. The genus-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>4</mn></math> examples were found in other papers, and we reproduce their equations here; in supplementary material, we provide equations for the genus-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>3</mn></math> examples. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"7 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the maximum gonality of a curve over a finite field\",\"authors\":\"Xander Faber, Jon Grantham, Everett W. Howe\",\"doi\":\"10.2140/ant.2025.19.1637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The gonality of a smooth geometrically connected curve over a field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math> is the smallest degree of a nonconstant <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math>-morphism from the curve to the projective line. In general, the gonality of a curve of genus <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>g</mi>\\n<mo>≥</mo> <mn>2</mn></math> is at most <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi>g</mi>\\n<mo>−</mo> <mn>2</mn></math>. Over finite fields, a result of F. K. Schmidt from the 1930s can be used to prove that the gonality is at most <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>g</mi>\\n<mo>+</mo> <mn>1</mn></math>. Via a mixture of geometry and computation, we improve this bound: for a curve of genus <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>g</mi>\\n<mo>≥</mo> <mn>5</mn></math> over a finite field, the gonality is at most <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>g</mi></math>. For genus <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>g</mi>\\n<mo>=</mo> <mn>3</mn></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>g</mi>\\n<mo>=</mo> <mn>4</mn></math>, the same result holds with exactly <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mn>1</mn><mn>7</mn></math> exceptions: there are two curves of genus <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>4</mn></math> and gonality <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>5</mn></math>, and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mn>1</mn><mn>5</mn></math> curves of genus <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>3</mn></math> and gonality <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>4</mn></math>. The genus-<math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>4</mn></math> examples were found in other papers, and we reproduce their equations here; in supplementary material, we provide equations for the genus-<math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>3</mn></math> examples. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.1637\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1637","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
域k上光滑几何连接曲线的正交性是曲线到射影线的非常数k态射的最小度。一般说来,g≥2属曲线的正交性不超过2g−2。在有限域上,F. K. Schmidt(1930)的一个结果可以用来证明正交性不超过g+ 1。通过几何和计算的混合,我们改进了这个界:对于在有限域上的g≥5的格曲线,其格性最多为g。对于g= 3和g= 4,除了217个例外,同样的结果成立:有2个格4和格5的曲线,有215个格3和格4的曲线。在其他论文中发现了第4类的例子,我们在这里重现了他们的方程;在补充材料中,我们提供了属3例子的方程。
On the maximum gonality of a curve over a finite field
The gonality of a smooth geometrically connected curve over a field is the smallest degree of a nonconstant -morphism from the curve to the projective line. In general, the gonality of a curve of genus is at most . Over finite fields, a result of F. K. Schmidt from the 1930s can be used to prove that the gonality is at most . Via a mixture of geometry and computation, we improve this bound: for a curve of genus over a finite field, the gonality is at most . For genus and , the same result holds with exactly exceptions: there are two curves of genus and gonality , and curves of genus and gonality . The genus- examples were found in other papers, and we reproduce their equations here; in supplementary material, we provide equations for the genus- examples.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.