{"title":"向Iwaniec-Luo-Sarnak家庭提供无条件的支持","authors":"Lucile Devin, Daniel Fiorilli, Anders Södergren","doi":"10.2140/ant.2025.19.1621","DOIUrl":null,"url":null,"abstract":"<p>We study the harmonically weighted one-level density of low-lying zeros of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi><!--mstyle--><mtext> -</mtext><!--/mstyle--></math>functions in the family of holomorphic newforms of fixed even weight <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> and prime level <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> tending to infinity. For this family, Iwaniec, Luo and Sarnak proved that the Katz–Sarnak prediction for the one-level density holds unconditionally when the support of the Fourier transform of the implied test function is contained in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mo>−</mo><mn>3</mn><mspace width=\"-0.17em\"></mspace><mo>∕</mo><mspace width=\"-0.17em\"></mspace><mn>2</mn><mo>,</mo><mn>3</mn><mspace width=\"-0.17em\"></mspace><mo>∕</mo><mspace width=\"-0.17em\"></mspace><mn>2</mn><mo stretchy=\"false\">)</mo></math>. This result was improved by Ricotta–Royer, who increased the admissible support for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi>\n<mo>≥</mo> <mn>4</mn></math> in a way that is asymptotically as good as the best known GRH result. We extend the admissible support for all <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi>\n<mo>≥</mo> <mn>2</mn></math> to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mo>−</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>Θ</mi></mrow><mrow><mn>2</mn></mrow></msub>\n<mo>=</mo> <mn>1</mn><mo>.</mo><mn>8</mn><mn>6</mn><mn>6</mn><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub></math> tends monotonically to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math> asymptotically five times faster than what was previously known. The main novelty in our analysis is the use of zero-density estimates for Dirichlet <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"22 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending the unconditional support in an Iwaniec–Luo–Sarnak family\",\"authors\":\"Lucile Devin, Daniel Fiorilli, Anders Södergren\",\"doi\":\"10.2140/ant.2025.19.1621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the harmonically weighted one-level density of low-lying zeros of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi><!--mstyle--><mtext> -</mtext><!--/mstyle--></math>functions in the family of holomorphic newforms of fixed even weight <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math> and prime level <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>N</mi></math> tending to infinity. For this family, Iwaniec, Luo and Sarnak proved that the Katz–Sarnak prediction for the one-level density holds unconditionally when the support of the Fourier transform of the implied test function is contained in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mo>−</mo><mn>3</mn><mspace width=\\\"-0.17em\\\"></mspace><mo>∕</mo><mspace width=\\\"-0.17em\\\"></mspace><mn>2</mn><mo>,</mo><mn>3</mn><mspace width=\\\"-0.17em\\\"></mspace><mo>∕</mo><mspace width=\\\"-0.17em\\\"></mspace><mn>2</mn><mo stretchy=\\\"false\\\">)</mo></math>. This result was improved by Ricotta–Royer, who increased the admissible support for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi>\\n<mo>≥</mo> <mn>4</mn></math> in a way that is asymptotically as good as the best known GRH result. We extend the admissible support for all <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi>\\n<mo>≥</mo> <mn>2</mn></math> to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mo>−</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math>, where <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>Θ</mi></mrow><mrow><mn>2</mn></mrow></msub>\\n<mo>=</mo> <mn>1</mn><mo>.</mo><mn>8</mn><mn>6</mn><mn>6</mn><mi>…</mi><mo> <!--FUNCTION APPLICATION--></mo></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub></math> tends monotonically to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn></math> asymptotically five times faster than what was previously known. The main novelty in our analysis is the use of zero-density estimates for Dirichlet <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi></math>-functions. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.1621\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1621","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Extending the unconditional support in an Iwaniec–Luo–Sarnak family
We study the harmonically weighted one-level density of low-lying zeros of functions in the family of holomorphic newforms of fixed even weight and prime level tending to infinity. For this family, Iwaniec, Luo and Sarnak proved that the Katz–Sarnak prediction for the one-level density holds unconditionally when the support of the Fourier transform of the implied test function is contained in . This result was improved by Ricotta–Royer, who increased the admissible support for in a way that is asymptotically as good as the best known GRH result. We extend the admissible support for all to , where and tends monotonically to asymptotically five times faster than what was previously known. The main novelty in our analysis is the use of zero-density estimates for Dirichlet -functions.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.