向Iwaniec-Luo-Sarnak家庭提供无条件的支持

IF 0.9 1区 数学 Q2 MATHEMATICS
Lucile Devin, Daniel Fiorilli, Anders Södergren
{"title":"向Iwaniec-Luo-Sarnak家庭提供无条件的支持","authors":"Lucile Devin, Daniel Fiorilli, Anders Södergren","doi":"10.2140/ant.2025.19.1621","DOIUrl":null,"url":null,"abstract":"<p>We study the harmonically weighted one-level density of low-lying zeros of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi><!--mstyle--><mtext> -</mtext><!--/mstyle--></math>functions in the family of holomorphic newforms of fixed even weight <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> and prime level <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> tending to infinity. For this family, Iwaniec, Luo and Sarnak proved that the Katz–Sarnak prediction for the one-level density holds unconditionally when the support of the Fourier transform of the implied test function is contained in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mo>−</mo><mn>3</mn><mspace width=\"-0.17em\"></mspace><mo>∕</mo><mspace width=\"-0.17em\"></mspace><mn>2</mn><mo>,</mo><mn>3</mn><mspace width=\"-0.17em\"></mspace><mo>∕</mo><mspace width=\"-0.17em\"></mspace><mn>2</mn><mo stretchy=\"false\">)</mo></math>. This result was improved by Ricotta–Royer, who increased the admissible support for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi>\n<mo>≥</mo> <mn>4</mn></math> in a way that is asymptotically as good as the best known GRH result. We extend the admissible support for all <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi>\n<mo>≥</mo> <mn>2</mn></math> to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mo>−</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>Θ</mi></mrow><mrow><mn>2</mn></mrow></msub>\n<mo>=</mo> <mn>1</mn><mo>.</mo><mn>8</mn><mn>6</mn><mn>6</mn><mi>…</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub></math> tends monotonically to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math> asymptotically five times faster than what was previously known. The main novelty in our analysis is the use of zero-density estimates for Dirichlet <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"22 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending the unconditional support in an Iwaniec–Luo–Sarnak family\",\"authors\":\"Lucile Devin, Daniel Fiorilli, Anders Södergren\",\"doi\":\"10.2140/ant.2025.19.1621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the harmonically weighted one-level density of low-lying zeros of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi><!--mstyle--><mtext> -</mtext><!--/mstyle--></math>functions in the family of holomorphic newforms of fixed even weight <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math> and prime level <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>N</mi></math> tending to infinity. For this family, Iwaniec, Luo and Sarnak proved that the Katz–Sarnak prediction for the one-level density holds unconditionally when the support of the Fourier transform of the implied test function is contained in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mo>−</mo><mn>3</mn><mspace width=\\\"-0.17em\\\"></mspace><mo>∕</mo><mspace width=\\\"-0.17em\\\"></mspace><mn>2</mn><mo>,</mo><mn>3</mn><mspace width=\\\"-0.17em\\\"></mspace><mo>∕</mo><mspace width=\\\"-0.17em\\\"></mspace><mn>2</mn><mo stretchy=\\\"false\\\">)</mo></math>. This result was improved by Ricotta–Royer, who increased the admissible support for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi>\\n<mo>≥</mo> <mn>4</mn></math> in a way that is asymptotically as good as the best known GRH result. We extend the admissible support for all <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi>\\n<mo>≥</mo> <mn>2</mn></math> to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mo>−</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math>, where <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>Θ</mi></mrow><mrow><mn>2</mn></mrow></msub>\\n<mo>=</mo> <mn>1</mn><mo>.</mo><mn>8</mn><mn>6</mn><mn>6</mn><mi>…</mi><mo> ⁡<!--FUNCTION APPLICATION--></mo></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>Θ</mi></mrow><mrow><mi>k</mi></mrow></msub></math> tends monotonically to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn></math> asymptotically five times faster than what was previously known. The main novelty in our analysis is the use of zero-density estimates for Dirichlet <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi></math>-functions. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2025.19.1621\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1621","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了趋于无穷偶数权k和素数阶N的全纯新形式族中L -函数的调和加权低零的一能级密度。对于这个族,Iwaniec, Luo和Sarnak证明了当隐含检验函数的傅里叶变换的支持包含在(−3∕2,3∕2)时,单能级密度的Katz-Sarnak预测是无条件成立的。Ricotta-Royer改进了这个结果,他以一种渐近的方式增加了k≥4的可接受支持度,与最著名的GRH结果一样好。我们将所有k≥2的容许支持扩展到(- Θk,Θk),其中Θ2= 1.866…(),Θk单调渐近趋于2的速度比以前已知的快5倍。在我们的分析中,主要的新颖之处是对狄利克雷l函数的零密度估计的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending the unconditional support in an Iwaniec–Luo–Sarnak family

We study the harmonically weighted one-level density of low-lying zeros of L -functions in the family of holomorphic newforms of fixed even weight k and prime level N tending to infinity. For this family, Iwaniec, Luo and Sarnak proved that the Katz–Sarnak prediction for the one-level density holds unconditionally when the support of the Fourier transform of the implied test function is contained in (32,32). This result was improved by Ricotta–Royer, who increased the admissible support for k 4 in a way that is asymptotically as good as the best known GRH result. We extend the admissible support for all k 2 to (Θk,Θk), where Θ2 = 1.866 and Θk tends monotonically to 2 asymptotically five times faster than what was previously known. The main novelty in our analysis is the use of zero-density estimates for Dirichlet L-functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信