评估甲状腺素型心脏淀粉样变性检测预测模型的性能和潜在偏差。

Jonathan Hourmozdi, Nicholas Easton, Simon Benigeri, James D Thomas, Akhil Narang, David Ouyang, Grant Duffy, Ross Upton, Will Hawkes, Ashley Akerman, Ike Okwuosa, Adrienne Kline, Abel N Kho, Yuan Luo, Sanjiv J Shah, Faraz S Ahmad
{"title":"评估甲状腺素型心脏淀粉样变性检测预测模型的性能和潜在偏差。","authors":"Jonathan Hourmozdi, Nicholas Easton, Simon Benigeri, James D Thomas, Akhil Narang, David Ouyang, Grant Duffy, Ross Upton, Will Hawkes, Ashley Akerman, Ike Okwuosa, Adrienne Kline, Abel N Kho, Yuan Luo, Sanjiv J Shah, Faraz S Ahmad","doi":"10.1101/2024.10.09.24315202","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Delays in the diagnosis of transthyretin amyloid cardiomyopathy (ATTR-CM) contribute to the significant morbidity of the condition, especially in the era of disease-modifying therapies. Screening for ATTR-CM with AI and other algorithms may improve timely diagnosis, but these algorithms have not been directly compared.</p><p><strong>Objectives: </strong>The aim of this study was to compare the performance of four algorithms for ATTR-CM detection in a heart failure population and assess the risk for harms due to model bias.</p><p><strong>Methods: </strong>We identified patients in an integrated health system from 2010-2022 with ATTR-CM and age- and sex-matched them to controls with heart failure to target 5% prevalence. We compared the performance of a claims-based random forest model (Huda et al. model), a regression-based score (Mayo ATTR-CM), and two deep learning echo models (EchoNet-LVH and EchoGo <sup>®</sup> Amyloidosis). We evaluated for bias using standard fairness metrics.</p><p><strong>Results: </strong>The analytical cohort included 176 confirmed cases of ATTR-CM and 3192 control patients with 79.2% self-identified as White and 9.0% as Black. The Huda et al. model performed poorly (AUC 0.49). Both deep learning echo models had a higher AUC when compared to the Mayo ATTR-CM Score (EchoNet-LVH 0.88; EchoGo Amyloidosis 0.92; Mayo ATTR-CM Score 0.79; DeLong P<0.001 for both). Bias auditing met fairness criteria for <i>equal opportunity</i> among patients who identified as Black.</p><p><strong>Conclusions: </strong>Deep learning, echo-based models to detect ATTR-CM demonstrated best overall discrimination when compared to two other models in external validation with low risk of harms due to racial bias.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155028/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating the performance and potential bias of predictive models for detection of transthyretin cardiac amyloidosis.\",\"authors\":\"Jonathan Hourmozdi, Nicholas Easton, Simon Benigeri, James D Thomas, Akhil Narang, David Ouyang, Grant Duffy, Ross Upton, Will Hawkes, Ashley Akerman, Ike Okwuosa, Adrienne Kline, Abel N Kho, Yuan Luo, Sanjiv J Shah, Faraz S Ahmad\",\"doi\":\"10.1101/2024.10.09.24315202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Delays in the diagnosis of transthyretin amyloid cardiomyopathy (ATTR-CM) contribute to the significant morbidity of the condition, especially in the era of disease-modifying therapies. Screening for ATTR-CM with AI and other algorithms may improve timely diagnosis, but these algorithms have not been directly compared.</p><p><strong>Objectives: </strong>The aim of this study was to compare the performance of four algorithms for ATTR-CM detection in a heart failure population and assess the risk for harms due to model bias.</p><p><strong>Methods: </strong>We identified patients in an integrated health system from 2010-2022 with ATTR-CM and age- and sex-matched them to controls with heart failure to target 5% prevalence. We compared the performance of a claims-based random forest model (Huda et al. model), a regression-based score (Mayo ATTR-CM), and two deep learning echo models (EchoNet-LVH and EchoGo <sup>®</sup> Amyloidosis). We evaluated for bias using standard fairness metrics.</p><p><strong>Results: </strong>The analytical cohort included 176 confirmed cases of ATTR-CM and 3192 control patients with 79.2% self-identified as White and 9.0% as Black. The Huda et al. model performed poorly (AUC 0.49). Both deep learning echo models had a higher AUC when compared to the Mayo ATTR-CM Score (EchoNet-LVH 0.88; EchoGo Amyloidosis 0.92; Mayo ATTR-CM Score 0.79; DeLong P<0.001 for both). Bias auditing met fairness criteria for <i>equal opportunity</i> among patients who identified as Black.</p><p><strong>Conclusions: </strong>Deep learning, echo-based models to detect ATTR-CM demonstrated best overall discrimination when compared to two other models in external validation with low risk of harms due to racial bias.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155028/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.10.09.24315202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.10.09.24315202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:甲状腺转蛋白淀粉样心肌病(atr - cm)的诊断延迟导致该病的显著发病率,特别是在疾病改善治疗的时代。用人工智能和其他算法筛查atr - cm可能会提高诊断的及时性,但这些算法尚未进行直接比较。目的:本研究的目的是比较四种算法在心力衰竭人群中检测atr - cm的性能,并评估模型偏差造成的危害风险。方法:我们在2010-2022年的综合卫生系统中确定了患有atr - cm的患者,并将他们的年龄和性别与心力衰竭的对照组相匹配,目标患病率为5%。我们比较了基于索赔的随机森林模型(Huda等模型)、基于回归的评分(Mayo atr - cm)和两种深度学习回声模型(EchoNet-LVH和EchoGo®淀粉样变性)的性能。我们使用标准公平指标评估偏倚。结果:分析队列包括176例确诊的atr - cm患者和3192例对照患者,其中79.2%自认为是白人,9.0%自认为是黑人。Huda等人的模型表现不佳(AUC为0.49)。与Mayo atr - cm评分相比,两种深度学习回声模型的AUC均较高(EchoNet-LVH 0.88;EchoGo淀粉样变性0.92;Mayo atr - cm评分0.79;为黑人患者提供平等的机会。结论:在外部验证中,与其他两种模型相比,深度学习、基于回声的atr - cm检测模型显示出最好的整体歧视,并且由于种族偏见造成的伤害风险较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the performance and potential bias of predictive models for detection of transthyretin cardiac amyloidosis.

Background: Delays in the diagnosis of transthyretin amyloid cardiomyopathy (ATTR-CM) contribute to the significant morbidity of the condition, especially in the era of disease-modifying therapies. Screening for ATTR-CM with AI and other algorithms may improve timely diagnosis, but these algorithms have not been directly compared.

Objectives: The aim of this study was to compare the performance of four algorithms for ATTR-CM detection in a heart failure population and assess the risk for harms due to model bias.

Methods: We identified patients in an integrated health system from 2010-2022 with ATTR-CM and age- and sex-matched them to controls with heart failure to target 5% prevalence. We compared the performance of a claims-based random forest model (Huda et al. model), a regression-based score (Mayo ATTR-CM), and two deep learning echo models (EchoNet-LVH and EchoGo ® Amyloidosis). We evaluated for bias using standard fairness metrics.

Results: The analytical cohort included 176 confirmed cases of ATTR-CM and 3192 control patients with 79.2% self-identified as White and 9.0% as Black. The Huda et al. model performed poorly (AUC 0.49). Both deep learning echo models had a higher AUC when compared to the Mayo ATTR-CM Score (EchoNet-LVH 0.88; EchoGo Amyloidosis 0.92; Mayo ATTR-CM Score 0.79; DeLong P<0.001 for both). Bias auditing met fairness criteria for equal opportunity among patients who identified as Black.

Conclusions: Deep learning, echo-based models to detect ATTR-CM demonstrated best overall discrimination when compared to two other models in external validation with low risk of harms due to racial bias.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信