电压成像揭示了神经中脑的电路计算,其基础是血清素介导的运动活力学习。

IF 15 1区 医学 Q1 NEUROSCIENCES
Takashi Kawashima, Ziqiang Wei, Ravid Haruvi, Inbal Shainer, Sujatha Narayan, Herwig Baier, Misha B Ahrens
{"title":"电压成像揭示了神经中脑的电路计算,其基础是血清素介导的运动活力学习。","authors":"Takashi Kawashima, Ziqiang Wei, Ravid Haruvi, Inbal Shainer, Sujatha Narayan, Herwig Baier, Misha B Ahrens","doi":"10.1016/j.neuron.2025.05.017","DOIUrl":null,"url":null,"abstract":"<p><p>As animals adapt to new situations, neuromodulation is a potent way to alter behavior, yet mechanisms by which neuromodulatory nuclei compute during behavior are underexplored. The serotonergic raphe supports motor learning in larval zebrafish by visually detecting distance traveled during swims, encoding action effectiveness, and modulating motor vigor. We tracked the raphe's input-output computations at millisecond timescales using voltage and neurotransmitter imaging and found that swimming opens a gate for visual input to cause spiking in serotonergic neurons, enabling the encoding of action outcomes and filtering out learning-irrelevant visual signals. Specifically, swim commands initially inhibited serotonergic neurons via γ-aminobutyric acid (GABA). Immediately after, membrane voltage increased via post-inhibitory rebound, allowing swim-induced visual motion to evoke firing through glutamate, triggering serotonin release to modulate future motor vigor. Ablating local GABAergic neurons impaired raphe coding and motor learning. Thus, serotonergic neuromodulation arises from action-outcome coincidence detection within the raphe.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltage imaging reveals circuit computations in the raphe underlying serotonin-mediated motor vigor learning.\",\"authors\":\"Takashi Kawashima, Ziqiang Wei, Ravid Haruvi, Inbal Shainer, Sujatha Narayan, Herwig Baier, Misha B Ahrens\",\"doi\":\"10.1016/j.neuron.2025.05.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As animals adapt to new situations, neuromodulation is a potent way to alter behavior, yet mechanisms by which neuromodulatory nuclei compute during behavior are underexplored. The serotonergic raphe supports motor learning in larval zebrafish by visually detecting distance traveled during swims, encoding action effectiveness, and modulating motor vigor. We tracked the raphe's input-output computations at millisecond timescales using voltage and neurotransmitter imaging and found that swimming opens a gate for visual input to cause spiking in serotonergic neurons, enabling the encoding of action outcomes and filtering out learning-irrelevant visual signals. Specifically, swim commands initially inhibited serotonergic neurons via γ-aminobutyric acid (GABA). Immediately after, membrane voltage increased via post-inhibitory rebound, allowing swim-induced visual motion to evoke firing through glutamate, triggering serotonin release to modulate future motor vigor. Ablating local GABAergic neurons impaired raphe coding and motor learning. Thus, serotonergic neuromodulation arises from action-outcome coincidence detection within the raphe.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2025.05.017\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.05.017","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

当动物适应新环境时,神经调节是改变行为的一种有效方式,但神经调节核在行为过程中计算的机制尚未得到充分探索。斑马鱼幼体通过视觉检测游泳距离、编码动作有效性和调节运动活力来支持运动学习。我们利用电压和神经递质成像技术在毫秒时间尺度上跟踪了脑电图的输入输出计算,发现游泳打开了视觉输入的大门,导致血清素能神经元的峰值,使动作结果编码,过滤掉与学习无关的视觉信号。具体来说,游泳指令最初通过γ-氨基丁酸(GABA)抑制血清素能神经元。紧接着,膜电压通过抑制后反弹增加,允许游泳诱导的视觉运动通过谷氨酸唤起放电,触发血清素释放以调节未来的运动活力。切除局部gaba能神经元会损害rapd编码和运动学习。因此,5 -羟色胺能神经调节产生于脑缝内的动作-结果重合检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voltage imaging reveals circuit computations in the raphe underlying serotonin-mediated motor vigor learning.

As animals adapt to new situations, neuromodulation is a potent way to alter behavior, yet mechanisms by which neuromodulatory nuclei compute during behavior are underexplored. The serotonergic raphe supports motor learning in larval zebrafish by visually detecting distance traveled during swims, encoding action effectiveness, and modulating motor vigor. We tracked the raphe's input-output computations at millisecond timescales using voltage and neurotransmitter imaging and found that swimming opens a gate for visual input to cause spiking in serotonergic neurons, enabling the encoding of action outcomes and filtering out learning-irrelevant visual signals. Specifically, swim commands initially inhibited serotonergic neurons via γ-aminobutyric acid (GABA). Immediately after, membrane voltage increased via post-inhibitory rebound, allowing swim-induced visual motion to evoke firing through glutamate, triggering serotonin release to modulate future motor vigor. Ablating local GABAergic neurons impaired raphe coding and motor learning. Thus, serotonergic neuromodulation arises from action-outcome coincidence detection within the raphe.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信