机器学习分析识别尾侧硬膜外脉冲射频治疗尾骨痛症的预测因素。

IF 2.5 3区 医学 Q2 CLINICAL NEUROLOGY
Journal of Pain Research Pub Date : 2025-06-07 eCollection Date: 2025-01-01 DOI:10.2147/JPR.S521331
Ender Sir, Sena Aydogan, Gul Didem Batur Sir, Alp Eren Celenlioglu
{"title":"机器学习分析识别尾侧硬膜外脉冲射频治疗尾骨痛症的预测因素。","authors":"Ender Sir, Sena Aydogan, Gul Didem Batur Sir, Alp Eren Celenlioglu","doi":"10.2147/JPR.S521331","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aims to use machine learning (ML) to explore predictive parameters related to the efficacy of caudal epidural pulsed radiofrequency (CEPRF) treatment for coccygodynia.</p><p><strong>Methods: </strong>Five different ML methods were used to predict treatment success at 6 months after CEPRF. The findings generated by these algorithms are compared with respect to the accuracy of the results.</p><p><strong>Results: </strong>Symptom duration, angular deformation and NRS at admission are the most significant factors impacting therapy success in coccygodynia patients. Success rates are obtained for relatively short symptom durations to be 71.83%, for longer periods to be 16.67%; for short durations together with no angular deformity to be 79.55%, with angular deformity to be 59.26%; and for NRS level at admission less than 8 together with angular deformity to be 91.67%, with no angular deformity to be 33.33%.</p><p><strong>Conclusion: </strong>This research reveals the potential of ML methods to improve treatment outcome prediction in coccygodynia. When a new patient is admitted, the ML-generated decision trees provide a quick and precise assessment of the possible success rate of CEPRF treatment.</p>","PeriodicalId":16661,"journal":{"name":"Journal of Pain Research","volume":"18 ","pages":"2839-2848"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12154530/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Analysis to Identify Predictive Factors of Caudal Epidural Pulse Radiofrequency in the Treatment of Coccygodynia.\",\"authors\":\"Ender Sir, Sena Aydogan, Gul Didem Batur Sir, Alp Eren Celenlioglu\",\"doi\":\"10.2147/JPR.S521331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study aims to use machine learning (ML) to explore predictive parameters related to the efficacy of caudal epidural pulsed radiofrequency (CEPRF) treatment for coccygodynia.</p><p><strong>Methods: </strong>Five different ML methods were used to predict treatment success at 6 months after CEPRF. The findings generated by these algorithms are compared with respect to the accuracy of the results.</p><p><strong>Results: </strong>Symptom duration, angular deformation and NRS at admission are the most significant factors impacting therapy success in coccygodynia patients. Success rates are obtained for relatively short symptom durations to be 71.83%, for longer periods to be 16.67%; for short durations together with no angular deformity to be 79.55%, with angular deformity to be 59.26%; and for NRS level at admission less than 8 together with angular deformity to be 91.67%, with no angular deformity to be 33.33%.</p><p><strong>Conclusion: </strong>This research reveals the potential of ML methods to improve treatment outcome prediction in coccygodynia. When a new patient is admitted, the ML-generated decision trees provide a quick and precise assessment of the possible success rate of CEPRF treatment.</p>\",\"PeriodicalId\":16661,\"journal\":{\"name\":\"Journal of Pain Research\",\"volume\":\"18 \",\"pages\":\"2839-2848\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12154530/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/JPR.S521331\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JPR.S521331","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:本研究旨在利用机器学习(ML)探索尾侧硬膜外脉冲射频(CEPRF)治疗尾骨痛症疗效的预测参数。方法:采用5种不同的ML方法预测CEPRF后6个月的治疗成功率。将这些算法产生的结果与结果的准确性进行比较。结果:症状持续时间、角度变形和入院时NRS是影响尾骨痛患者治疗成功的最重要因素。较短症状持续时间的成功率为71.83%,较长症状持续时间的成功率为16.67%;短时间无角畸形者占79.55%,有角畸形者占59.26%;入院时NRS水平小于8且有角畸形者占91.67%,无角畸形者占33.33%。结论:本研究揭示了ML方法提高尾骨痛治疗结果预测的潜力。当新患者入院时,机器学习生成的决策树提供了对CEPRF治疗可能成功率的快速准确评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Analysis to Identify Predictive Factors of Caudal Epidural Pulse Radiofrequency in the Treatment of Coccygodynia.

Background: This study aims to use machine learning (ML) to explore predictive parameters related to the efficacy of caudal epidural pulsed radiofrequency (CEPRF) treatment for coccygodynia.

Methods: Five different ML methods were used to predict treatment success at 6 months after CEPRF. The findings generated by these algorithms are compared with respect to the accuracy of the results.

Results: Symptom duration, angular deformation and NRS at admission are the most significant factors impacting therapy success in coccygodynia patients. Success rates are obtained for relatively short symptom durations to be 71.83%, for longer periods to be 16.67%; for short durations together with no angular deformity to be 79.55%, with angular deformity to be 59.26%; and for NRS level at admission less than 8 together with angular deformity to be 91.67%, with no angular deformity to be 33.33%.

Conclusion: This research reveals the potential of ML methods to improve treatment outcome prediction in coccygodynia. When a new patient is admitted, the ML-generated decision trees provide a quick and precise assessment of the possible success rate of CEPRF treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pain Research
Journal of Pain Research CLINICAL NEUROLOGY-
CiteScore
4.50
自引率
3.70%
发文量
411
审稿时长
16 weeks
期刊介绍: Journal of Pain Research is an international, peer-reviewed, open access journal that welcomes laboratory and clinical findings in the fields of pain research and the prevention and management of pain. Original research, reviews, symposium reports, hypothesis formation and commentaries are all considered for publication. Additionally, the journal now welcomes the submission of pain-policy-related editorials and commentaries, particularly in regard to ethical, regulatory, forensic, and other legal issues in pain medicine, and to the education of pain practitioners and researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信