{"title":"牙周炎加速小鼠心力衰竭进展并保留射血分数。","authors":"Samar Daana MSc , Yair Rokach PhD , Suzan Abedat PhD , Dean Nachman MD , Hadeya Mohsen BSc , Sama Karram DMD, MSc , Yael Zandberg DMD , Rinat Tzach-Nachman DMD, PhD , Jonathan Cohen MD, PhD , Offer Amir MD , Yael Houri-Haddad DMD, PhD , Rabea Asleh MD, PhD, MHA","doi":"10.1016/j.jacbts.2025.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic low-grade inflammation and nitric oxide (NO) depletion are important contributors to heart failure with preserved ejection fraction (HFpEF) pathophysiology. Periodontitis (PD) is a common inflammatory disease implicated in dysregulation of NO hemostasis. Epidemiological studies have shown an association between PD and increased risk of cardiovascular disease, including heart failure. However, a causative relationship between the 2 diseases has not yet been proven. In this study, we sought to investigate the direct effect of PD induction on HFpEF progression in a mouse model. Induction of PD in HFpEF mice resulted in significant oral microbial dysbiosis, accelerated progression of diastolic dysfunction by echocardiography, and increased myocardial inflammation and fibrosis. These deleterious effects seen with PD were shown to be mediated by increased systemic blood pressure, increased systemic inflammation, and NO depletion. Our study provides evidence of potential mechanistic links between PD and HFpEF progression and suggests PD as a new therapeutic target for HFpEF.</div></div>","PeriodicalId":14831,"journal":{"name":"JACC: Basic to Translational Science","volume":"10 8","pages":"Article 101270"},"PeriodicalIF":8.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodontitis Accelerates Progression of Heart Failure With Preserved Ejection Fraction in Mice\",\"authors\":\"Samar Daana MSc , Yair Rokach PhD , Suzan Abedat PhD , Dean Nachman MD , Hadeya Mohsen BSc , Sama Karram DMD, MSc , Yael Zandberg DMD , Rinat Tzach-Nachman DMD, PhD , Jonathan Cohen MD, PhD , Offer Amir MD , Yael Houri-Haddad DMD, PhD , Rabea Asleh MD, PhD, MHA\",\"doi\":\"10.1016/j.jacbts.2025.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chronic low-grade inflammation and nitric oxide (NO) depletion are important contributors to heart failure with preserved ejection fraction (HFpEF) pathophysiology. Periodontitis (PD) is a common inflammatory disease implicated in dysregulation of NO hemostasis. Epidemiological studies have shown an association between PD and increased risk of cardiovascular disease, including heart failure. However, a causative relationship between the 2 diseases has not yet been proven. In this study, we sought to investigate the direct effect of PD induction on HFpEF progression in a mouse model. Induction of PD in HFpEF mice resulted in significant oral microbial dysbiosis, accelerated progression of diastolic dysfunction by echocardiography, and increased myocardial inflammation and fibrosis. These deleterious effects seen with PD were shown to be mediated by increased systemic blood pressure, increased systemic inflammation, and NO depletion. Our study provides evidence of potential mechanistic links between PD and HFpEF progression and suggests PD as a new therapeutic target for HFpEF.</div></div>\",\"PeriodicalId\":14831,\"journal\":{\"name\":\"JACC: Basic to Translational Science\",\"volume\":\"10 8\",\"pages\":\"Article 101270\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACC: Basic to Translational Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452302X25001226\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC: Basic to Translational Science","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452302X25001226","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Periodontitis Accelerates Progression of Heart Failure With Preserved Ejection Fraction in Mice
Chronic low-grade inflammation and nitric oxide (NO) depletion are important contributors to heart failure with preserved ejection fraction (HFpEF) pathophysiology. Periodontitis (PD) is a common inflammatory disease implicated in dysregulation of NO hemostasis. Epidemiological studies have shown an association between PD and increased risk of cardiovascular disease, including heart failure. However, a causative relationship between the 2 diseases has not yet been proven. In this study, we sought to investigate the direct effect of PD induction on HFpEF progression in a mouse model. Induction of PD in HFpEF mice resulted in significant oral microbial dysbiosis, accelerated progression of diastolic dysfunction by echocardiography, and increased myocardial inflammation and fibrosis. These deleterious effects seen with PD were shown to be mediated by increased systemic blood pressure, increased systemic inflammation, and NO depletion. Our study provides evidence of potential mechanistic links between PD and HFpEF progression and suggests PD as a new therapeutic target for HFpEF.
期刊介绍:
JACC: Basic to Translational Science is an open access journal that is part of the renowned Journal of the American College of Cardiology (JACC). It focuses on advancing the field of Translational Cardiovascular Medicine and aims to accelerate the translation of new scientific discoveries into therapies that improve outcomes for patients with or at risk for Cardiovascular Disease. The journal covers thematic areas such as pre-clinical research, clinical trials, personalized medicine, novel drugs, devices, and biologics, proteomics, genomics, and metabolomics, as well as early phase clinical trial methodology.