{"title":"基于强化学习的泊泽维尔流微游泳者智能导航。","authors":"Priyam Chakraborty, Rahul Roy, Shubhadeep Mandal","doi":"10.1140/epje/s10189-025-00496-1","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial microswimmers, such as active colloids, have the potential to revolutionize targeted drug delivery, but controlling their motion under imposed flow conditions remains challenging. In this work, we implement reinforcement learning (RL) to control the navigation of a microswimmer in a plane Poiseuille flow, with applications in targeted drug delivery. With RL, the swimmer learns to efficiently reach its target by continuously adjusting its swinging or tumbling behavior depending upon its self-propulsion strength, chirality and the imposed flow strength. This RL-based approach enables precise control of the particle's path, achieving reliable targeting even in stringent scenarios such as upstream motion in high bulk flow, thus advancing the design of intelligent in vivo medical microrobots.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 6-7","pages":"30"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart navigation of microswimmers in Poiseuille flow via reinforcement learning.\",\"authors\":\"Priyam Chakraborty, Rahul Roy, Shubhadeep Mandal\",\"doi\":\"10.1140/epje/s10189-025-00496-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial microswimmers, such as active colloids, have the potential to revolutionize targeted drug delivery, but controlling their motion under imposed flow conditions remains challenging. In this work, we implement reinforcement learning (RL) to control the navigation of a microswimmer in a plane Poiseuille flow, with applications in targeted drug delivery. With RL, the swimmer learns to efficiently reach its target by continuously adjusting its swinging or tumbling behavior depending upon its self-propulsion strength, chirality and the imposed flow strength. This RL-based approach enables precise control of the particle's path, achieving reliable targeting even in stringent scenarios such as upstream motion in high bulk flow, thus advancing the design of intelligent in vivo medical microrobots.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"48 6-7\",\"pages\":\"30\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1140/epje/s10189-025-00496-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1140/epje/s10189-025-00496-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Smart navigation of microswimmers in Poiseuille flow via reinforcement learning.
Artificial microswimmers, such as active colloids, have the potential to revolutionize targeted drug delivery, but controlling their motion under imposed flow conditions remains challenging. In this work, we implement reinforcement learning (RL) to control the navigation of a microswimmer in a plane Poiseuille flow, with applications in targeted drug delivery. With RL, the swimmer learns to efficiently reach its target by continuously adjusting its swinging or tumbling behavior depending upon its self-propulsion strength, chirality and the imposed flow strength. This RL-based approach enables precise control of the particle's path, achieving reliable targeting even in stringent scenarios such as upstream motion in high bulk flow, thus advancing the design of intelligent in vivo medical microrobots.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.