II族内含子的计算从头设计产生高活性核酶。

IF 2.8 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-06-12 DOI:10.1002/cbic.202500356
Deni Szokoli, Noemi E. Nwosu, Lukas M. Glatt, Hannes Mutschler
{"title":"II族内含子的计算从头设计产生高活性核酶。","authors":"Deni Szokoli,&nbsp;Noemi E. Nwosu,&nbsp;Lukas M. Glatt,&nbsp;Hannes Mutschler","doi":"10.1002/cbic.202500356","DOIUrl":null,"url":null,"abstract":"<p>Group II introns (G2Is) are large self-splicing ribozymes with emerging potential in biotechnological applications. Despite growing interest, their complexity has so far precluded efforts to design them from scratch. While computational approaches have enabled the design of small RNA catalysts, methods for engineering large ribozymes remain underdeveloped. Herein, the RNA inverse folding algorithm aRNAque is used to design G2Is from scratch, yielding three novel self-splicing ribozymes with unusually stable structures. The designed intron Arq.I2 is revealed to be an unexpectedly proficient ribozyme in vitro, self-splicing at a rate comparable to the fastest known G2Is. While most G2Is are believed to be inactive under intracellular conditions in the absence of maturase proteins, it is shown that Arq.I2 self-splices in <i>Escherichia coli</i> cells. The results demonstrate that highly active variants of large and complex ribozymes can be designed de novo with relative ease using existing inverse folding algorithms, paving the way for the design of bespoke ribozymes derived from G2Is for the development of biotechnological tools.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":"26 14","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.202500356","citationCount":"0","resultStr":"{\"title\":\"Computational De Novo Design of Group II Introns Yields Highly Active Ribozymes\",\"authors\":\"Deni Szokoli,&nbsp;Noemi E. Nwosu,&nbsp;Lukas M. Glatt,&nbsp;Hannes Mutschler\",\"doi\":\"10.1002/cbic.202500356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Group II introns (G2Is) are large self-splicing ribozymes with emerging potential in biotechnological applications. Despite growing interest, their complexity has so far precluded efforts to design them from scratch. While computational approaches have enabled the design of small RNA catalysts, methods for engineering large ribozymes remain underdeveloped. Herein, the RNA inverse folding algorithm aRNAque is used to design G2Is from scratch, yielding three novel self-splicing ribozymes with unusually stable structures. The designed intron Arq.I2 is revealed to be an unexpectedly proficient ribozyme in vitro, self-splicing at a rate comparable to the fastest known G2Is. While most G2Is are believed to be inactive under intracellular conditions in the absence of maturase proteins, it is shown that Arq.I2 self-splices in <i>Escherichia coli</i> cells. The results demonstrate that highly active variants of large and complex ribozymes can be designed de novo with relative ease using existing inverse folding algorithms, paving the way for the design of bespoke ribozymes derived from G2Is for the development of biotechnological tools.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\"26 14\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.202500356\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202500356\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202500356","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

II族内含子(G2Is)是一种大型自剪接核酶,在生物技术应用中具有新兴的潜力。尽管人们对它们越来越感兴趣,但迄今为止,它们的复杂性阻碍了从零开始设计它们的努力。虽然计算方法已经能够设计小RNA催化剂,但设计大型核酶的方法仍然不发达。在这里,我们使用RNA反折叠算法aRNAque从零开始设计G2Is,产生三种结构异常稳定的新型自剪接核酶。设计的内含子Arq。I2在体外被发现是一种意想不到的熟练核酶,其自剪接速度可与已知最快的G2Is相媲美。虽然大多数G2Is被认为在缺乏成熟酶蛋白的细胞内条件下是无活性的,但我们发现Arq。大肠杆菌细胞中的I2自剪接。我们的研究结果表明,利用现有的逆折叠算法,可以相对容易地重新设计大型复杂核酶的高活性变体,为设计源自G2Is的定制核酶以开发生物技术工具铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational De Novo Design of Group II Introns Yields Highly Active Ribozymes

Computational De Novo Design of Group II Introns Yields Highly Active Ribozymes

Group II introns (G2Is) are large self-splicing ribozymes with emerging potential in biotechnological applications. Despite growing interest, their complexity has so far precluded efforts to design them from scratch. While computational approaches have enabled the design of small RNA catalysts, methods for engineering large ribozymes remain underdeveloped. Herein, the RNA inverse folding algorithm aRNAque is used to design G2Is from scratch, yielding three novel self-splicing ribozymes with unusually stable structures. The designed intron Arq.I2 is revealed to be an unexpectedly proficient ribozyme in vitro, self-splicing at a rate comparable to the fastest known G2Is. While most G2Is are believed to be inactive under intracellular conditions in the absence of maturase proteins, it is shown that Arq.I2 self-splices in Escherichia coli cells. The results demonstrate that highly active variants of large and complex ribozymes can be designed de novo with relative ease using existing inverse folding algorithms, paving the way for the design of bespoke ribozymes derived from G2Is for the development of biotechnological tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信