溶酶体靶向萘酰亚胺荧光检测铁(III)及铁代谢监测。

IF 3.9 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Bioconjugate Chemistry Pub Date : 2025-07-16 Epub Date: 2025-06-11 DOI:10.1021/acs.bioconjchem.5c00092
Shuang-Shuang Long, Xi-Feng Zou, Wen-Xi Zhang, Ke Zeng, Qing-Long Qiao, Xu-Dong Jiang, Ying-Wu Lin
{"title":"溶酶体靶向萘酰亚胺荧光检测铁(III)及铁代谢监测。","authors":"Shuang-Shuang Long, Xi-Feng Zou, Wen-Xi Zhang, Ke Zeng, Qing-Long Qiao, Xu-Dong Jiang, Ying-Wu Lin","doi":"10.1021/acs.bioconjchem.5c00092","DOIUrl":null,"url":null,"abstract":"<p><p>Iron is crucial for numerous biological processes, and lysosomes play an essential role in iron metabolism by regulating Fe<sup>3+</sup> levels. Disruptions of this regulation can lead to Fe<sup>3+</sup> accumulation, resulting in membrane damage and ferroptosis. Here, we have developed a water-soluble fluorescent probe <b>BiNIT</b> that specifically targets lysosomes for the selective detection of Fe<sup>3+</sup>. <b>BiNIT</b> features a bis-naphthalimide structure linked by a thiophene moiety and incorporates two quaternary ammonium groups, which enhance its ability to target lysosomes and its solubility in aqueous environments. The probe showed high selectivity for Fe<sup>3+</sup>, with fluorescence quenching resulting from the paramagnetism of Fe<sup>3+</sup> and its capacity to induce probe aggregation. This aggregation occurs through coordination bonds between Fe<sup>3+</sup> and the carbonyl oxygen, imide nitrogen, or thiophene sulfur in multiple probe molecules. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) confirmed the formation of nanoparticles upon Fe<sup>3+</sup> binding. Moreover, <b>BiNIT</b> remains stable in environments with pH values above 4, facilitating precise monitoring of Fe<sup>3+</sup> levels within lysosomes. This innovative tool provides valuable insights into iron homeostasis, oxidative stress, and ferroptosis, aiding research on iron-related diseases and the development of therapeutic strategies.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"1430-1437"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lysosome-Targeted Naphthalimide-Based Fluorescence for the Detection of Fe(III) and Monitoring of Iron Metabolism.\",\"authors\":\"Shuang-Shuang Long, Xi-Feng Zou, Wen-Xi Zhang, Ke Zeng, Qing-Long Qiao, Xu-Dong Jiang, Ying-Wu Lin\",\"doi\":\"10.1021/acs.bioconjchem.5c00092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Iron is crucial for numerous biological processes, and lysosomes play an essential role in iron metabolism by regulating Fe<sup>3+</sup> levels. Disruptions of this regulation can lead to Fe<sup>3+</sup> accumulation, resulting in membrane damage and ferroptosis. Here, we have developed a water-soluble fluorescent probe <b>BiNIT</b> that specifically targets lysosomes for the selective detection of Fe<sup>3+</sup>. <b>BiNIT</b> features a bis-naphthalimide structure linked by a thiophene moiety and incorporates two quaternary ammonium groups, which enhance its ability to target lysosomes and its solubility in aqueous environments. The probe showed high selectivity for Fe<sup>3+</sup>, with fluorescence quenching resulting from the paramagnetism of Fe<sup>3+</sup> and its capacity to induce probe aggregation. This aggregation occurs through coordination bonds between Fe<sup>3+</sup> and the carbonyl oxygen, imide nitrogen, or thiophene sulfur in multiple probe molecules. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) confirmed the formation of nanoparticles upon Fe<sup>3+</sup> binding. Moreover, <b>BiNIT</b> remains stable in environments with pH values above 4, facilitating precise monitoring of Fe<sup>3+</sup> levels within lysosomes. This innovative tool provides valuable insights into iron homeostasis, oxidative stress, and ferroptosis, aiding research on iron-related diseases and the development of therapeutic strategies.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry\",\"volume\":\" \",\"pages\":\"1430-1437\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.5c00092\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.5c00092","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

铁对许多生物过程至关重要,溶酶体通过调节Fe3+水平在铁代谢中发挥重要作用。这种调节的破坏可导致Fe3+积累,导致膜损伤和铁下垂。在这里,我们开发了一种水溶性荧光探针BiNIT,专门针对溶酶体选择性检测Fe3+。BiNIT具有由噻吩部分连接的双萘酰亚胺结构,并包含两个季铵基团,这增强了其靶向溶酶体的能力和在水环境中的溶解度。探针对Fe3+表现出高选择性,Fe3+的顺磁性及其诱导探针聚集的能力导致荧光猝灭。这种聚集是通过Fe3+与多个探针分子中的羰基氧、亚胺氮或噻吩硫之间的配位键发生的。动态光散射(DLS)和透射电子显微镜(TEM)证实了Fe3+结合后形成的纳米颗粒。此外,BiNIT在pH值高于4的环境中保持稳定,有助于精确监测溶酶体内的Fe3+水平。这个创新的工具为铁稳态、氧化应激和铁中毒提供了有价值的见解,有助于铁相关疾病的研究和治疗策略的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lysosome-Targeted Naphthalimide-Based Fluorescence for the Detection of Fe(III) and Monitoring of Iron Metabolism.

Iron is crucial for numerous biological processes, and lysosomes play an essential role in iron metabolism by regulating Fe3+ levels. Disruptions of this regulation can lead to Fe3+ accumulation, resulting in membrane damage and ferroptosis. Here, we have developed a water-soluble fluorescent probe BiNIT that specifically targets lysosomes for the selective detection of Fe3+. BiNIT features a bis-naphthalimide structure linked by a thiophene moiety and incorporates two quaternary ammonium groups, which enhance its ability to target lysosomes and its solubility in aqueous environments. The probe showed high selectivity for Fe3+, with fluorescence quenching resulting from the paramagnetism of Fe3+ and its capacity to induce probe aggregation. This aggregation occurs through coordination bonds between Fe3+ and the carbonyl oxygen, imide nitrogen, or thiophene sulfur in multiple probe molecules. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) confirmed the formation of nanoparticles upon Fe3+ binding. Moreover, BiNIT remains stable in environments with pH values above 4, facilitating precise monitoring of Fe3+ levels within lysosomes. This innovative tool provides valuable insights into iron homeostasis, oxidative stress, and ferroptosis, aiding research on iron-related diseases and the development of therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信