Olivia K. Foster, Derek Hiscox, Sawnaz Shaidani, Jean Park, Ella Canas, Charlotte Jacobus, Riley Patten, David L. Kaplan
{"title":"用于组织工程生物材料的功能性纳米粒子增强丝水凝胶","authors":"Olivia K. Foster, Derek Hiscox, Sawnaz Shaidani, Jean Park, Ella Canas, Charlotte Jacobus, Riley Patten, David L. Kaplan","doi":"10.1002/jbm.a.37945","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Hydrogels prepared from natural polymers, such as silk fibroin, are useful in the field of tissue engineering due to their biocompatibility, biodegradability, and biological performance. However, poor mechanical properties can limit their broader utility. This study investigated reinforcing enzymatically crosslinked silk hydrogels with 130 nm silk nanoparticles (SNPs) to generate silk-silk composite materials with tunable strength and stiffness. The strength of the materials was dependent on SNP concentration, and hydrogels with Young's moduli of 14, 34, and 67 kPa were fabricated by adding no SNPs, 2 mg/mL SNPs, and 4 mg/mL SNPs, respectively. These methods were applied to silk bioinks using Freeform Reversible Embedding of Suspended Hydrogels (FRESH) 3D printing to fabricate complex 3D structures with control of elasticity and modulus. Cylinders with Young's moduli of 17, 35, and 58 kPa were obtained with no SNPs, 2 mg/mL SNPs, and 4 mg/mL SNPs, respectively. SNPs were also preloaded with epidermal growth factor (EGF), relevant for tissue development and wound healing, and sustained release was achieved for over 15 days when embedded in hydrogels. Pilot studies of dermal fibroblast encapsulation in SNP-reinforced silk hydrogels demonstrated cytocompatibility. Tunable silk hydrogels reinforced with SNPs provide application-specific scaffolding for a variety of biomaterial and tissue engineering applications.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Nanoparticle-Enhanced Silk Hydrogels for Tissue Engineering Biomaterials\",\"authors\":\"Olivia K. Foster, Derek Hiscox, Sawnaz Shaidani, Jean Park, Ella Canas, Charlotte Jacobus, Riley Patten, David L. Kaplan\",\"doi\":\"10.1002/jbm.a.37945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Hydrogels prepared from natural polymers, such as silk fibroin, are useful in the field of tissue engineering due to their biocompatibility, biodegradability, and biological performance. However, poor mechanical properties can limit their broader utility. This study investigated reinforcing enzymatically crosslinked silk hydrogels with 130 nm silk nanoparticles (SNPs) to generate silk-silk composite materials with tunable strength and stiffness. The strength of the materials was dependent on SNP concentration, and hydrogels with Young's moduli of 14, 34, and 67 kPa were fabricated by adding no SNPs, 2 mg/mL SNPs, and 4 mg/mL SNPs, respectively. These methods were applied to silk bioinks using Freeform Reversible Embedding of Suspended Hydrogels (FRESH) 3D printing to fabricate complex 3D structures with control of elasticity and modulus. Cylinders with Young's moduli of 17, 35, and 58 kPa were obtained with no SNPs, 2 mg/mL SNPs, and 4 mg/mL SNPs, respectively. SNPs were also preloaded with epidermal growth factor (EGF), relevant for tissue development and wound healing, and sustained release was achieved for over 15 days when embedded in hydrogels. Pilot studies of dermal fibroblast encapsulation in SNP-reinforced silk hydrogels demonstrated cytocompatibility. Tunable silk hydrogels reinforced with SNPs provide application-specific scaffolding for a variety of biomaterial and tissue engineering applications.</p>\\n </div>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"113 6\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37945\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37945","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Functional Nanoparticle-Enhanced Silk Hydrogels for Tissue Engineering Biomaterials
Hydrogels prepared from natural polymers, such as silk fibroin, are useful in the field of tissue engineering due to their biocompatibility, biodegradability, and biological performance. However, poor mechanical properties can limit their broader utility. This study investigated reinforcing enzymatically crosslinked silk hydrogels with 130 nm silk nanoparticles (SNPs) to generate silk-silk composite materials with tunable strength and stiffness. The strength of the materials was dependent on SNP concentration, and hydrogels with Young's moduli of 14, 34, and 67 kPa were fabricated by adding no SNPs, 2 mg/mL SNPs, and 4 mg/mL SNPs, respectively. These methods were applied to silk bioinks using Freeform Reversible Embedding of Suspended Hydrogels (FRESH) 3D printing to fabricate complex 3D structures with control of elasticity and modulus. Cylinders with Young's moduli of 17, 35, and 58 kPa were obtained with no SNPs, 2 mg/mL SNPs, and 4 mg/mL SNPs, respectively. SNPs were also preloaded with epidermal growth factor (EGF), relevant for tissue development and wound healing, and sustained release was achieved for over 15 days when embedded in hydrogels. Pilot studies of dermal fibroblast encapsulation in SNP-reinforced silk hydrogels demonstrated cytocompatibility. Tunable silk hydrogels reinforced with SNPs provide application-specific scaffolding for a variety of biomaterial and tissue engineering applications.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.